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PREFACE

The Finite Analytic llethod

This monograph contains the fundamental development of
the new numerical method called the "Finite Analytic" method.
The finite analytic method differs from the finite diiference
nethod and the finite element method. The basic idea of the
finite analytic method is the incorporation of local analytic
solutions in the nunerical solution of linear or nonlinear
partial differential equations. In the rinite analytic method,
the total problem is subdivided into a number of small
elements, The local analytic solution is obtained for the
small element in which the governing equation, if nonlinear,
is linearized. The local analytic solutions are then expressed
in algebraic form and are overlapped to cover the entire
region of the problem. The assembly of these local analytic
solutions, whicn still preserves the overall nonlinearity or
the governing equation, results in a system of linear
algebraic equations. The system of algebraic equations is then
soived to provide the numerical solutions of the total problen.

Unlike the finite difference method, the tfinite analytic
rmethod does not tamper with the differentials or the
derivatives oi the governing eguation, nor does the analytic
nethod need the shape function which is made to satisty the
integral form of the governing equation, as in the finite
element method. The finite analytic solution obtained from the
finite analytic method is differentiable, As a result, the
derivative of the solution obtained analytically is nuch wmore
reliable. In this monograph the finite analytic solution is
shown to be stable, even when the highest derivative term of
the partial difrferential equation is rnultiplied by a small
factor, such as one over Reynolds number., It is also shown that
tne rinite analytic solution for Navier-Stokes equations at
aigh Reynolds numbers automatically provides a gradual shatt
of the upwinding erfect. Therefore the finite analytic solution
accurately simulates the effect of convection and eliminates
the false numerical diffusion that would occur in the upvinding
dificrence or unidirection difference used in the finite
difference or the rfinite element nethods. The couputational
time ior the finite anayltic solution 15 snown to be aoout
equal to that of tihe finite dirrference nethod. In certalin cases,
due to tihe stability of the system of algebraic equations
derived in tne rfinite analyitc method, the overall computational
time can be even liess. Tae iinite analytic gsolution deriveu ia
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tiie present analytic mehtod is in its most elementary rorm in
terms of accuracy. But it has already been shown to be
sufficient for the problemns under consideration. Further
accurate finite analytic formulae can be derived and are
indicated in the monograph,

The finite anlytic method was developed in early 1977,
when Dr. Peter Li was then a graduate student working on his
doctoral dissertation with me, He had been having difficulty in
obtaining convergence of a systeia of Linite difference
algebraic equations derived from the Navier-Stokes eguations
for two-dimensional turbulent tlow with a second-order
turbulent model. I conceived the rfinite analytic nethod one
night and solved the simple two-dimensional Laplace eguation.
Li then carried the finite analytic method to the unsteady
diffusion equation and nonlinear ordinary differential
equations and complted his Ph.D. dissertation in 1978.

In 1981, ilessrs., ilohamad Zahed Sheikholeslami, Bahram rhaligai,
and Kanwerdip Singh developed the finite analytic method
further by solving the ordinary and partial dirferential
equations and the Navier-Stokes equations with primitive
variables. This bound volume essentially contains the research
results of jlessrs. Sheikholeslami, Khalighi, Singh, and myselr.
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PART 1

APPLICATION OF FINITE ANALYTIC METHOD TO THE NUMERICAL
SoLuTION oF Two-PoINT BounDARY VALUE PROBLEMS oF
ORDINARY DIFFERENTIAL EQUATIONS
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CHAPTER I

INTRODUCTION

Two-point boundary value problems associated with

i

vstems of linear and nonlinear ordinarv Jdifferential
equations occur in many branches of mathematics,
engineering, and the various sciences. In these problems
boundary conditions are specified at the end points of
the problem interval, and a solution of the differential
equations over the interval is sought which satisfies

the given boundary conditions.

Cenerally, for boundary value problems, if the
differential equation is nonlinear or it is linear with
variable coefficients, the construction of a solution,
even though it may be known to exist and to be unigue,
is difficult, and the integration of the differential
equation must often resort to a numerical approach.

Several numerical methods have been developed for
solving ordinary differential equations of boundary
vaiu=2 problem, which mav pe Jdivided into two main
approaches, Jdiscretization methods and integral methods.
The discretizaticn methods are based on discretizing the
pronlem Jdomain intc small resions. Depeadiny cn how the

approximate :olution is Jevised in the snmall subregions,
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there are several discretization methods. For example,
finite difference (FD) methods (1), (2), finite element
(FE) method (3), and the recently developed finite
analvtic (FA) method (4).

The integral methods are based on approximating the
solution over the whole interval by a series. Each term
of the series 1is usually a polynomial or a suitable
function that satisfies the boundary conditions. The
coefficients of the series are determined by substituting
the series into the differential equation, and minimizing
the residual (s).

In the FD method, the total region is broken up 1nto
finite subregions by 2 finite number of discrete points.
The finite difference is obtained from a truncated Tayvlor
series expansion to provide approximately the relation
between the dependent variable and 1ts derivative at a
chosen point, and its neighboring points. The differen-
tial equation at each point is approximated by a dif-
ference equation. Therefore, for n discrete points, n
algebraic equations are ohtained, relatiny the unknown

Jependent variapbles with 1t3 ngighboring points. This

s

vstem 1S readily solved if the algebraic system is linear.
[£ it is nonlinear, she equation 13 linearized and the

solution 1ts obtained with a suitable iterative method (9.
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In the FE method, the first step is to subdivide the
problem domain into small subregions. Then an approximate
functional form connecting the unknown nodal values of the
dependent variables in the subregion is chosen to
| represent the solution in each subregion. These approxi-
i mate functions (shape functions) normally are polynomials

because of their simplicity. The approximate function is
then made to satisfy the governing equation in an integral
form in each subregion. The most commonly used forms of
: the integrals are the weighted —“esiduals integral (WR) and
the variational form of the governing equation (7). The
weighted residuals integral is based on minimization of
the residual in the subregion when the approximate solution
is substituted into the integral of the differential
) equation governing the problem. Other schemes are possible
to achieve the aim of minimization of resuduals such as
collocation, sub-domain, least squares, and Galerkin
methods (8). Minimizing the residual leads to an algebraic
equation describing the behavior of an element. For 1ll the

elements a set of linear (or nonlinear) simultaneous alge-

_
B
4
4
4
d
=

braic equations are obtained relating the value at each

nodal point with 1ts neighboring points. The set of alge-

braic equations is solved as in the case of the FD method.
The recentlw developed finite analvtic 'FAj method

neither a finite difference nor a finite elemeat method.

T =
Po-]




The FA method utilizes lccal analytic solutions of the
difrerential equation obtained for small regions regions
that form the total region considered in the problem. The
FA numerical solution of the problem is then made of all
the local analvtic solutions. If the differential equation
i3 nonlinear or linear with complex variable coefficients,
the FA method divides the problem into many subintervals.
In each subregion, the nonlinear terms are locally linear-
ized, and the complex variable coetficients are replaced

by a local constant. By solving the differential eguaticn
in each subregion, a relation between the unknown dependent
variable at nodal points in the subregion is obtained. 3v
repeatinyg this procedure for each subregion, a system of
algebraic equations 1s obtained relating the unknown
Jdependent variable at each point with values of surrounding
points. The svstem of the algebraic equations 1s then
solved as in the FD or FE methods.

The methods Jescribed above have been used exten-
sively in numerical solutions of differential equations.
The FD methcd is easv to handle, bHut, Jdue to the approxi-
mation made for the derivatives, tne method mav not provide
accurate solutions, and sometimes the svstem of algebraic
equation derived from a4 particular tinite difference
scheme 1is unstable. The FE method is relativelv stable
and can treat verv complex boundarv c¢caditions, but it

2 more amount of mathematics tiaan the

e

needs a consilderab




"—_v_.ww,, e o - . T T o e R . T e e A A

“inite Jdifference (FD) method. aAlso, it has difriculty in
treating the boundary conditions specified at infinity.

The aim of this study is to extend the FA method to
boundary value problems of second order ordinary differ-
ential equations, and to examine the convergence, stability,
and accuracv of the FA method. A comparison of the finite
analvtic solution with sclutions obtained from the FD

method is given for several numerical exanmples.
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CHAPTER II

LITERATURE REVIEW

Although there are many works which have studied

numerical solution of two point boundary value problems,
there are few works that bear resemblance to the FA methed
(3), (9), (10), which shall be investigated in the present
studv. Befcre reviewing d2tails of previous works,
different methods used in solving both linear and non-
linear two point boundary value problems will be briefly
described. It should be mentioned that most methods used
to solve nonlinear boundary value problems invoke local
linearization at some stage of the numerical calculation.

II-1. Numerical Methods

[I-1-1. The Method of Weighted Residuals

The method of weighted residuals, sometimes known
as the method of undetermined coefficients, is essentially
an integral method of obtaining solutions to differential
equations. In this method, the unknown solution 1is
expanded in a set of trial functions with adjustable
constants, which are chosen to give the best solution.
The trial functions are a family of functicns satisfving
the boundarv conditions of the original problem. The

substitution of these trial functions and their deriva-

tives into the original equation gives a residual eguation
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describing the error in the solution interval. If the
trial function were the exace solution, the residual would
be zero. The constants in the trial function are chosen
in such a way that the residual is forced to be zerc in

an average sense.

There are several wavs for computing the coefficients
of the trial series; for example, the collocation method,
the least squares method, and the Galerkin method. In the
collocation method (1), (12), the coefficients are
determined by the requirement that the trial function has
to satisfy exactly the governing equation at chosen
locations. The numerr of locations chosen should be equal
£o the number of unknown coefficients. In the least
squares method, the weighting function is chosen to be the
residual. Thus, the method is based on choosing coeffi-
cients of trial function such that the integral of the
square of the residual over the interval under consideration
can be minimized.

One of the best known approximate methods was
developed by Galerkin 1in 1915 (13). In this method, the
weighted functions are chosen to be the trial functions.
The trial functions must be chosen as members of a complete
set of orthogonal functions. A set of orthogonal
functions is complete if any function of a given class

can be expanded in terms of the set. Thus, the Galerkin
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method forces the residual to be zero by making it
orthogonal to each member of a complete set of functions.
II-1-2. Finite Difference Method

Among different methods suggested for solving bound-
arv value problems, the FD methods are more frequently
used (1), (2). The FD method mentioned in Chapter I
is based on the difference approximation of derivatives
derived from truncated Taylor series expansions, thus
converting the ordinary differential equation into a set
of algebraic equations, thus provides the numerical
calculation of the ordinary differential equation.

Although the FD method is not the present FA method,
there are several studies combining the FD methods with
the analytic solutions of problems (9), (10), which have
some resemblance to the FA method.

Allen and Southwell ({10), in seeking a numerical
solution for the two-dimensional motion of a viscous
fluid past a fixed cylinder, solved a nonlinear partial
differential equation in terms of stream function and
vorticity. This equation is linear, and is solved by a
finite difference method vielding a relationship between
the stream function at a point and its neighboring nodes.
The vorticity equation is solved by a "two diagram
technique'" in which the stream function and the vorticity
are modified alternately. That is, the linearized

vorticity equation is divided into two parts, each of




which is an ordinary Jdifferential equation because it
contains onlv terms with derivatives in one direction.
The analvtic solution is then obtained for each ordinary
differential equation. These analytic solutions are used
to modify the finite difference approximation of the
vorticity equation. The modified finite difference
equations include the exponential terms that are obtained
from the analytic part of the solution.

Recently, Dennis and Hudson (9) exploited this idea
further to obtain a higher order approximation to second
order partial Jdifferential equaticns. Again, the partial
differential equation is divided into two parts, each
part being an ordinary Jdifferential equation. These
equations are solved in two normal directions. The two
analvtic solutions are then matched at the point or
intersection of the two normal lines. This process
leads to the finite Jdifference approximation to the
original problem. The above methods are similar to the

A method in the

s

ense taat both invoke the analvtic

:

solutions. However, in the present FA method, the finite

c*

didference approximation s not used.  The FA numerical

o

solutions are obtatined from the ¢

[
U
"

embly 0f all local

anal«tic solutions.

Ti-1-3 Finite Element Method
i1 the Tt method 7Y, which ts discussed 1n Jhavter |

he differential egquation 1s wriftten in 1ts variationai

A
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form, known as a functional or an integral function, is
to be minimized in each finite element. Therefore, after
discretizing the whole region into small finite sub-
regions, the solution will be represented by an approxi-
mate function (shape function) with unknown coefficients.
Substitution of this approximate function into the
integral function and minimizing it vields a system of
algebraic equations from which the unknown coefficients
can be obtained. This system can be solved as in the
case of the FD method.
I1-1-4. Finite Analvtic Method
Direct utilization of the local analytic solution ot
the lineari:ed problem in the numerical solution of the
ordinary differential equations has not been used in the
above methods. The idea of incorporation of local
analvtic solutions of the linearized equation in the
numerical solution of boundarv value problems, which 1is
the basic principle or the FA method first introduced
by Chen and Li (4). Although most of their work was
devoted to the treatment ot partial dirfferential equa-

ticns, there 15 a shor:t Jdiscu

g

sion atout ordinary
differential egquations. The example considered was the

1.

kner-Skan problem (14): the solution of £''' + f&'' +

n
—

3

ta

s,
r?.

(1-¢'7) = 0, a nonlinear Jdifferential equation with

rr,

houndary ceonditions £ 2 £ = 0 and = = 1. The

governing equation is linearized and integrated locallwv,
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However, the integrand is approximated by a second

degree polynomial. The problem is then cast into an
initial value problem, and solved by a shooting technique.
In the shooting method, only f and f' are given at the
boundary n = 0. Therefore, f'"(0) will have to be
determined wuch that the solution satisfies the far field
boundary condition of f£'(») = 1 at n = =, This shooting
algorithm is similar to that used by Carnahan et.al (6).
However, instead of the Runge-Kutta integration scheme,
the FA formulation was used.

In the present investigation, the shooting technique
is not used. All problems are treated as boundarv value
problems. In solving the Falkner-Skan problem, the
linearized equation in f' is solved as a boundary value

problem with the known boundary conditions, i.e., f'(0)

"
<
-

f'(#) = 1 when the far field boundarv condition f'(= =

=

in the calculatvicn is replaced by a finite domain. That
is, it is assumed that f' (n,) = 1.0. This Falkner-Skan
problem is solved in detail and discussed in Chapter VI.

[T-2. Methods of Solving Boundarv Value Problems

So far dirfferent numerical schemes for solving
boundary value problems have been considered. 1iIn solving
boundary value problems with higher order finite

difference schemes, such as Runge-Kutta, the problem 1is

re,

usually cast into a series of first order initial value

problems. To solve these equations, the initial condition




for each equation is needed. But since the original
conditions ave snecified at the boundaries, some of the
initial conditions will be missing. There are different
methods of obtaining these missing initial conditions.
The most widely used technique of finding a missing
initial condition is the shooting method, which will be
discussed briefly.
II-2-1. Shooting Method

The methods of finding the missing initial conditions
can be svstematically applied. One of the most useful
methods is the method of adjoints for the linear equation.
This method is based on associating with every set of
linear ordinary differential equations a companion set
of equations called the adjoint equations. The adjoint
equations are defined as the set of homogeneous linear
ordinary differential equations whose matrix of coeffi-
cients 1is the negative transpose of the matrix of the
original set of linear ordinaryv differential equations.
The initial and terminal boundary conditions of adjoint
equations are related to the initial and terminal
boundary conditions of the original svstem bv a certain
identity. By solving the adjoint equations, the missing
initial conditions are found directlv. For nonlinear
two point pboundary value problems, the method of adjoint
equations can also be used iteratively after the nonlinear

term is locallvy linearized. The method for nonlinear

R

b o
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problems does not compute the missing initial conditions,

but rather computes corrections
the missing initial conditions.
sion of this method and similar

11-2-2. Invariant Imbedding

to the trial values for
For a complete discus-

methods, refer to (15).

Invariant imbedding 1is another technique that can be

exploited to f£ind the missing initial conditions (16),(17).

Consider a differential equation which is to be solved in

the domain (O,tf). Instead of only considering a single

problem with an interval of (O,tf), the invariant

imbedding approach 1s to consider a family of problems

that consist of a variable interval (0,a) where a ranges

from zero to the value of te- Then the problems are

solved first for a small interv
close to zero. Since the diffe
almost czero interval, the missi
be obtained by a Taylor series.
the original two point boundary
an initial value problem 1in the

formulation. = The family of pro

al of (0,a), where a 1s

rential equation had

ng initial condition may
Expressed in this way
value problem becomes
invariant imbedding

blems is then formed by

increments of the interval length. This is the essence

of the method of invariant imbedding.

II-3. Linearization Technique

Many boundary value problemns occuring in science and

engineering are nonlinear. Therefore, tO be solved by
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the FD or FA method, it is necessary to lineari:ze then.
There are different methods to overcome this difficulty.
Cne way is the interval averaging approximation; i.e.,
the nonlinear terms are replaced by an integral average
of their values over each small subregion. ({bviouslv, to
start the linearization, an initial guess for the non-
linear terms is needed, which makes the process an
iterative one. Quazilinearization is a more standard
way of linearizing the nonlinear forms. In the quasi-
linearization technique, instead of being solved
directly, the nonlinear differential equation is solved
recursively with an approximated linear differential
equation. To illustrate the qQuasilinearizations,
consider the nonlinear second order differential equa-
tion y"(x) = £(y(x), v'(x)). Here £(v,v') denotes the
function which contains nonlinear terms. ne quasi-
linearization process starts with expanding f in Tavior
series in terms of the functions Y and v' around a given
tunction of Yo © yO(x) with second and higher order
terms of the series €xXpansion omitted. Here yo\x) 1s a
chosen function which satisfies the boundarv conditions
and is used as the initial guess of the solution.
Replacing £ by its Tavlor series expansion gives a linear

differential equaticn wisth variable coefficient

s,

Soiving this equation with the inizial asproximated



 §
{
i

tunction VU, a better appronimation to the solution

g
wiil be obtatned, sav YI\&\‘ Replacing ¥ bv Yy and
repeating this procedure, further improved solution will
be obtained. This iterative procedure is verv similar

to the method of successive substitution or the Newton-
Raphson method, but iastead of roots of an algebraic
cuation, 1t ocoatawns the solution of a4 Jditferential
cquation.  Thiz method was originally developed by el lman
and Kalaba (1) and has been used tor solving nonlinear
two point boundary value problems by manv authors (L9,
ceM I dhapter Voand Chapter VDo the present study,

compartson s made betuween gquastlineartization and

integral averaging approntmations.
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CHAPTER 1II

PRINCIPLES OF FINITE ANALYTIC METHOD

The basic idea of the finite analvtic method
1s the incorporation of analvtic solutions in the nu-
merical solution of differential equations. To illus-
trate the basic principles of the FA method for solving
boundary value problems of ordinary differential equa-

tions, consider a second order ordinary differential

equation:
L(y(x)) = G a < x<b
subject to boundary conditions

YarVa) =0 Bylyypsvg) =0 (ITI-1)

over an interval {a,b] as shown in Figure (III-1-a).
L mav be a linear or nonlinear second order differential

operator, G is the nonhomogeneous term of the ordinaryv

[eW

re,

led at x = a and x = b,
The objective of the FA method is to obtain a nu-

merical solutlon tor such a boundary value problem, when

—

the analvtic 30

ution oI the problem is Jdifficult to oob-
tain, Jdue to the noniirearit: o7 the Jifferential ecqua-
tion or the complexisy of the coerfficients

1fferential equation. The boundary conditions are speci-
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The first step in applying the FA method is to sub-

ol

divide the total region (line x) of the problem into n

|

finite subregions with finite line elements of length h,

Yi denoting the nodal value of the dependent variables

b
.th .
at 1 node where i = 1,2,.... n + 1.

B RN U U

Consider a line element of length 2h (Figure III-1-b).
In this small line element, if the differential equaticn
is linear with complicated coefficients the coefficients
are made constant locally, and if the differential equation
is nonlinear, the nonlinear terms are lineari:ed and variable
coefficients made constant locally. The local constant used

in lineari-zation varies from interval to interval. The

analvtic solution for the locally linearized problem can
be obtained easily. If the line elements are small, the
local linearization is a good approximaticn, since the
effect of the variable coefficients or the nonlinearity
of the problem is still approximately preserved in the
total region. Indeed, local linearization also is used
in FD and FE methods. The problem now has been reduced
into one with manv finite regions, where analvtic solu-
tions can be obtained, if tne boundary conditicns in each
simple finite line element are properly speciried.

Let the governing equation in a line element be
Livi(x)) = G where L is now a linear second order dif-

ferential operator, and let RIY yQ, YS’ yé be tnhe nodal
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value and its derivative at the northern and scuthern
boundary of the line element. The analytic solution can
be cbtained anywhere in the line as a function of the

boundary conditions
v o= £y Vo Y y;. h, x, G) (I11-2)
‘ S

h 1is the distance between the midpoint p and the boundarv
points, s and N. When equation (III-2) is evaluated at

the point p, it provides an analvtic relationship between
the functional value at the interior point p of the leccal

subregion yp, and its surrounding points N and S or

vy = £y

D v Ygr VG Vs D) (ITI-3)

Furthermore, since Equation (III-2) is analvzic, it is

differentiable. Thus differentiating Equation (III-2)

and evaluating at the point p, we have

= f‘(V\, Yoo Y’ b

h) (ITI-4)

Equations (III-3) and (III-4) are the fundamental formu-
lae for the present FA method. For the linear or locally
zed

linear:

problem, the S3-point FA formula has the form
v = Ve + SV * vi o+ v
Yo T C Vg Cg¥y * Dvg s Dyry
(IT1-3)
veo= QMoo+ Clve + DIvios DOV
’n S R A 4 NN

where the ccefficients ¢, D, C; D-are cbtained from the
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| jocal analytic solution. It should be noted here that
the finite analytic solution obtained in Equation (I1I-5)
in the interior of the subregion is exact in the sense
that it is obtained from an analvtic solution to the ODE
in the finite subregion. The only approximation involved,
if anv, is from the local approximation made on the coef-
ficient or, nonlinear term of the governing equation.

In an internal finite subregion of the total region
D, the neighboring nodal value of Yyr Yo y&, yé are, 1in
general, unknown. However, thevy can be in turn eXpres-
sed as an analytic function of their neighboring points.
This procedure may be repeated for all the unknown nodes

(1) in the total region D. Thus, in general,

voo= Civip * CierYien * DirVion T PaeVien
(I111-6)

v: = C? ,v. +CI_,V. DT L,V* + DI ,Vv?

1 i-17i-177i+11+1 i-17i-1 1+1°1+1

where Yo yi are the nodal value and 1its derivative at
the midpoint of a given subregion, and other v's in the
Equation (III-6) are the boundarvy values gilven in £qua-

tion (II1I-5). The assembly of all the expressions for

all nodes can then be expressed in mazrix form. The
svstem of algebraic equations can now be solved numeri-

callv as in the finite difference method to zive the nu-

merical solution of the tctal problem.




There is an essential difference between the FA method
just described, and the other numerical schemes, such as
the FD method and the FE method. In the FD method, the
relation bectween Yp and its neighboring points Yy and
Y is not obtained from the analvtic solution of the
differential equation, but from the difference formula or
from the truncated Tavlor series expansion of the
dependent variable about its neighboring points. On the
other hand, the FE method assumes an approximated
functional form, normally some polvnomial of a lower

degree, say up to the Sth oT 6th

degree to represent the

solution and uses the variational or Galerkin type of

integration on the differential equation to find the

relation between Yp and its neighboring points Yy and Yoo
In the following chapters, some typical second

order differential equations will be treated. Examples

are solved to illustrate the detailed solution procedure

of the FA method.

et ST AL Faa e oA ! AN - B
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CHAPTER IV

FINITE ANALYTIC METHOD FOR A SECOND ORDER
- BOUNDARY VALUE PROBLEM OF NONLINEAR

DIFFERENTIAL EQUATIONS

In this chapter, the FA method will be applied to

the boundary value problem of a nonlinear second order

IV-1. Derivation of FA Formula

|

|

|

|

‘ ordinary differential equation.

|

\

Let us consider the nonlinear ordinary differential

equation of the form

y" o+ Aly',y,x) ¥' + B(y',v,x) y = C(y',v,Xx)

a <x <b (IV-1)
Subject to the boundary conditions

v(a) = a; and y(b) = *2 (1V-2)

= [f Equation (IV-1) is nonlinear or linear, but with

variable coefficients, then an analyvtic solution of Eyua-

: tions (IV-1) and (IV-2) is difficult to obtain. A numeri-

E cal solution is then sought. The first step in applying
the FA method i3 to subdivide the total regicn into small

i subregions as shown in Figure (IV-la). TIf the finite sub-

regions are small enough, the nonlinear term or the
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variable coefficients can be made constant locally.

Thus, Equatioa (IV-1) can be written as:
y'" +Ay' + By = C (IV-3)

where A, B and C are constants for each finite subregion
of 2h length. The solution of the Equation {IV-3) can
oe readily obtained (21). The boundaryv conditions

for a typical element can be written as:

y(o) = Yg

(IV-1)
v(Zh) = v

N

Depending on the magnitude of A~ - 4B, three different

cases of solution can be realized as follows:
b

I. A" - 4B < D
In this case, the characteristic equation

n~ + A + B =0 (IV-3)

. . . . + .
has two imaginary and distinct roots, p- 1ig,

and the solution is:

Vo= ePx [C1 Cos gx + C, Sin qgx] = %
(IV-0)
where p = - ;
J - - . .
q = 3-A (IV'O‘I\
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In this case, the characteristic Equation (IV-4)

has two real and €qual roots, m, =

1 2 =M, and

the solution is:
Yy or G+ Cpe™ . & (IV-7)

where m = ;# (Iv-7-1)

ITI. A% - 4B < g

In the third case, the characteristic Equation

(IV-4) has two real and distinct roots m, and
M., and the solution is
v o= Ce™¥e cyemax. € (IV-8)
where
5
m -A+ A -4B
1 -
, (IV-8-1)
m, = -A- A"-UB

Cl and C, are constants to be determined using boundary
conditions (IV-4) forp each finite element cf length 2h,
Now, the F\ formula for 2 tvpical element

cdses will be found.

for the ahove

Case .

<,Cos qx + (C.Sin Qx| o+ (IV-9)

Wy

:
E
r
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boundaryvy conditions.

= 2 =
y(0) = vygq y(Zh) = yy
Substituting the boundary conditions into Equation (IV-6), f
T . = - E :
we have: Cl Ys B %
2ph C 2ph \
vy Vs © Plcos 2qh + 5 (e“PlCos 2gh-1)

C, = — (IV-10)
- ? 1
e“PPsin 2gh

substituting Equations (IV-10) intc Equation (IV-6),

one can find the analytic solntion in the finite sub-
region in terms of the nodal value of y at the boundaries
of the finite line element. In particular, for v at
point p (x=h) yp, Equation (IV-6) reduces to the

following algebraic form:

ph -ph ph
- e | . e . C e
Yp (2 Cos qh’ s (7 Cos qﬁ) N B (2 Cos gh *
¢"Ph ,
T Cos qf U (IV-11)
which can be written as
'Vp = CSYS + C.\IY.V + Cp (IV-12)
where
ePh . e PN C -
Cs " T Tos qr * “N - 7T Cos gqn ’ - (Cgriy-bL)
(IV-13)

i A‘__..MA-,*_.“,*A#A._MA_.___M,____M
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Repeating the above procedure for the other two cases
we obtain the FA solution with similar forms as
Equation (Iv-12), but for case II, (A‘ - 48 = 0)
= ¢
;=Y "B
2 2
Y\I - y S e'-mh-% (1’e(-mh)
C, = — (IV-14)
2 ’h eth
and therefore
emh e—mh C
CS = == CN = 5 , Cp = § (C *CN‘l) (IV‘lD)
for the third case (A‘ - 4B > 0)
2
Yo e2m1h -yt % (1_e_m2h)
C, = d
1 eZmZE\‘_eZmlh
(IV-16)
2 9]
Yy oY SRLE %(l-e‘mlh)
C, = = % :
- e~m2h_ezmln
and thus
¢ - cmi*mph 1
S S emiﬁ+em2 * N em15+emZE ’
C (IV-17)
Lp = 3 (LS+CN‘1)

As can be observed from the above equations, the general

form of the solution is:

Cove - v+ 0wy =¢C (IV-13)

R T
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or more generally
Ciot¥io1 7 Y1t GierYier TN (IV-19)

This equation is the finite analytic (FA) representation
of the original problem (IV-1), (IV-2), and can be solved
numerically by elimination or iterative methods.

IV-2. Calculation of Derivatives

I[f the functions A(y',v,x) and B(y',v,x) in Equation
(IV-1) involve the derivative of the dependent variable
v', the derivative of vy can be found simply by differen-
tiating the local analytic solution (IV-6) to (IV-3).
But the problem is still nonlinear; therefore, the sclu-
tion procedure for the FA method involves an iterative
scheme. That is, it is necessary to renew the value of
the derivative v' as well as the function v in A and 3B
for each iteration until the difference of FA solution
for vy between two iterations is small enough, To lineari:ze
A(v',v,x) and B(y',v,x) with average value of v and v' nver
each finite subregion requires the analytic solution of tne
derivative v' in addition to v. After local lineari:zation
oY the coefficients A, B and C, the analvtic solution
is found for Equation (IV-5). Derivatives of vy can be

obtained easilv by differentiating Equations {IV-6) to

(IV-8), or from Equation (IV-b).



o aPX L e v e .
v' = pelTle,Cos qn + C,Sin gqx]

1

] - - ~
+ ePf -qC,Sin qn *+ qC,Cos qn]j
q 1.,

1

and from Equation (IV-38)

The constants Cl and C: for case [ are given
(IV-9), for case [T in Equation (IV-14), and
in Cquation (IV-1lo0).

Since the approximation is over the inte
average value of v and v' should be found tor

finite subregion. For this purpose, one can

Simpscn's integration formula 1. e.

N
JSydx
average v = "T’
h
+dv o+ )
3(\: -l " ‘N"
= -
N
= E [\ ‘b,l\ 0\“’
O S 0 N

Similarly for the dertvative

\l\'L‘I’Lllo \" = |\ "51\-

(IV-20)

(IV-21)

in Equation

for Case [1]

rval, the
cach

use the

[

i
|
|
1
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IV-3. Calculation of Derivatives at the Boundaries

1

X =a, X =D

Equations (IV-20) t» (IV-21) give the value of

derivative of the function in every point in the sub-

region of length 2h. The nodal values of the derivative

of the function are needed at the beginning of each
iteration. For x = a and x = b, the same squations
are used, but the coefficients of the equaticns would
be the same as the coefficients of their neighboring
points because they both belong to the same interval.

Therefore, we can write the solution as follows:

Case (I)

v'(a) = pepa[ClCos qa+(C,Sin qa]

+ epa[-qCISin gqa+qC.Cos qga]
Case (II)

v'(a) = C,e™® + (cl#c,a)mema
Case 'III)

viiad) = Clmleml1 + C.mem2d

The same procedure mav be used for x = b as shown in

Figure (IV-2).
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Procedure for FA solution of Equation (IV-1), therefore,

consists of the following steps:

Step I. Local Linearization

The first step of the FA method is to subdivide
the problem region into many subregions. In each
region, the nonlinear terms are lineari:zed and then
each term is approximated
The constant represents an average of the variable

coefficient in the subregicn. The FA solution

given in Equation (IV-19) is used in the calculations.

Step 2. The Initial Profile

As shown in Equation (IV-19) the FA method is
an implicit method. If the equation is nonlinear,
an initial guessed solution is needed to start
the iteration, so that a better approximation for
the nonlinear terms can be made. One simple choice
for the initial iteration is the line joining the
two boundary points v(a), v(b) at two ends of the
total region (a,b). Another choice is a second
order polvnomial passing through the two end ncints
and cne mid noint.
Step 3. Coefficient Tabulation

This step is to find the FA coefficients given

in Equation (IV-13% using Eqg:ations .[V-13

(@]
(8 4
O

}
i
1
1
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Step 4. FA Solution
In this step, the svstem of linear algebraic
Equations (IV-19) is solved by the elimination
Step S. Iteration
The new and old values of the function at each
node are now compared. If the discrepancies are in
the desired range, the converged solution is
obtained. If not, the procedure is repeated
again from Step 2. But, instead of using the initial
profile, the calculated nodal values of the function
and its derivative are used as new values to
evaluate A and B. At this stage, if needed,
the following over (under) relaxation parameter
may be used. Let y.

J+1 J+]_
value of the function and its derivative just

and y' be the new nodal

obtained from the calculation. Then we have:

v, = v, + v(v,. - v.)

il jrl ]
¥ > 1 over relaxation

v < 1 under relaxation

tJ

i o= 0,1, 15 the 1teration 1index

Similarly , the over and under relaxation

scheme for the Jderivative can be written as

where Vi.p and vi.p are over relaxed or under




4
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A

relaxed values of the function and its derivative
to be used in the next calculation. The flow chart

for the above five steps is shown in Figure ( Iv-3).
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CHAPTER V

ILLUSTRATIVE EXAMPLES

In this chapter, some examples of FA solutions are
considered. All examples chosen have a kxnown solution
so that the FA solutions may be compared not only with
the finite difference solution or other numerical
solutions, but also with the exact solution.

V-1. Linear Equation with Variable Coefficients

Consider the ordinary differential equation
2
y'' e dxy' + 2(1+2x7) v =0 (V-1)

subject to boundary conditions

x =0 y =0
(V-2)
x =1 v = 1
5
. . - . . . -X +
The analvtic solution for this equation 1is vy = Xxe 1.

[n order to apply the FA method to Eguation (V-1),

1t is rewritten in the standard FA form as given in
Equation (IV-3), where the values of A, 3 and C for
aach ¢tlement of length Zh is obtained bv taking

the integral average of the variable coefficient over
that interval respectively. For example, when < is

the center node o0¢f the ¢finite element,
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Since three nodal values are available, a Simpson's

closed interval formula gives:

_ 1 , \
A=z (Ai-l + 4Ai + Ai+l)

1x.
i

where A,
i
Similarly, for B
X.
1
LA 2
xi_l.(l+2x )dx

Zh

1]
—~
o%)

[F4B+B L)

i+l
2
where Bi = Z(1+2xi)

The coefficient C is zero in this example.

Once the values of A, B and C are determined for
each interval of length 2h, the coefficients of the
finite analytic equation (IV-17) can be obtained using
Equations (IV-6) to (IV-10) as

C C =C, (IV-1%)

i-171-1 7 Y1 T RierT e i

The svystem of algebraic equations (IV-1%) can now
be solved numerically by elimination method to provide
the FA solution of Equation (V-1).

Table (V-1) shows the FA solution and the numerical
solutions obtained from FD and shooting methods in
addition to the analvtic solution. All numerical

calculations in the table (V-1) are made with an 1increment

[P
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Table V-1

Numerical Solutions of Equation (V-1) VS the Analytic Solution

X Exact FD FA Shooting
0.0 0.0 0.0 0.0 0.0
0.1 0.26912 | 0.26918 | 0.26913 | 0.26912
0.2 0.52233 | 0.522450 | 0.52236 | 0.52234
0.3 0.74529 | 0.74534 | 0.74532 | 0.74530
0.4 0.9265¢ | 0.92673 | 0.92658 | 0.92655
0.5 1.05850 | 1.058699 | 1.05853 | 1.05850
0.6 1.13°88 | 1.138081 | 1.13792 | 1.13789
0.7 1.16570 | 1.16587 | 1.16575 | 1.16571
0.8 1.14666 | 1.14678 | 1.14668 | 1.14668
0.9 1.08832 | 1.038839| 1.08833 | 1.08833
1.0 1.0000 1.0 1.0 1.0
Time 5.537SRU| 7.854SRU | 8.123SRU
Used
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interval of h = 0.02 which gives 50 intervals in the
solution domain. The FD solution with 50 intervals is

also obtained using the following finite difference

equation:

-2V.+Y. Y., =V n
i 7i-l 2l 4 g(1e2x]) vy = 0

The shooting method solutions using a fourth order
Runge -Kutta integration scheme are also obtained in
Table (V-1). The tabulated values are after 1¢ shootings.
Comparison of different solutions in Table (V-1),
shows that the finite analytic solution is definitely
better than the finite difference solution, while the
shooting method, which is based on integration of the
equation using an accurate fourth order Runge-Kutta
algorithm, gives slightly better solutions than the
finite analvtic solution. However, it is found that if
the missing initial condition is changed slightly, the
solution does not converge to the exact solution. Also,
since an initial condition has to be guessed, the problem
involves iteration. For this problem with the exact
missing condition, convergence is achieved after 10
iterations. For the interval size of h = 0.02, the
time used in three cases are also listed in the table.
The procedure for finding the missing initial conditions

starts with guessing two different initial conditions

. " - e sy
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and finding their corresponding boundary values. If these
values are difterent from the prescribed boundary condi-
tion, another initial condition is guessed using linear
interpolation. This prccedure can be repeated by using
another linear or perhaps a quadratic or higher order
interpclation to produce a sequence of new values for the
missing initial condition until a selected assumed value
of the initial condition produces the boundary value
solution as accurately as desired.

Table (V-2) shows the effect of grid size on the
accuracy of the FD and FA solutions, and Table “V-3) 1is
an indication of the error of the predicted solution
at x = 0.4, produced by each method. Note that for
small grid size, both methods vield good results. How-
ever, as the grid size becomes larger, the finite
difference solution shows more error than the FA solution.
This example shows that the FA solution is less sensitive
to the interval size. All three methods used for this
problem are stable, which is due to the linearity of
the ecuation.

V-2. Nonlinear Ordinarv Differential Equation I

As a second example, we consider the following

nonlinear differential equation:

Yy” + y = O (\”‘3)

L T T T

dhshg i3 kol " il ik SR d e i Mo i et
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Table V-2

Equation (V-1) using the FD and FA Methods

41

2| 002 0.1 0.2 [ o.s Exact
0.0 0.0 0.0 0.0 0 0.0
0.2 0.5224 0.5251 0.5336 0.5223
0.4 0.9267 0.9312 0.9456 0.9265
0.5 2 1.0585
0.6 1.1380 1.1427 1.1578 1.1378
0.8 1.1467 1.1497 1.1593 1.1466
1.0 1.0 1.0 1.0 0 1.0

Finite Difference

N3 002 0.1 0.2 5 Exact
0.0 0.0 0.0 0.0 .0 0.0
0.2 0.5223 0.5229 0.5246 0.5225
0.4 0.9265 0.9274 0.9300 0.9265
0.5 0821 | 1.0585
0.6 1.1379 1.1387 1.1412 1.1398
0.3 1.1455 1.1471 1.1485 1.1466
1.0 1.0 1.0 1.0 .0 1.0

Finite Analytic
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of Equation (V-1) for FA and FD Methods at Point x=0.4
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Table V-3

ALY

Comparison of % error of the Numerical Solution

h 0.02 0.1 0.2 0.5

% Error 4 Error 4y Error % Ervor
FA 0.00 0.114 0.4 2,22
ED 0,019 0.530 2. 10 13.42
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subject to boundary conditions
v(0) =0 v(2) = 2 (V-4)

We note that Equation (V-3) is singular at x =0 because

s o e

of the boundary condition y(0) = 0.
V-2-1. FA Solution
In order to apply the FA method, the nonlinear

terms Equation (V-3) are first linearized in a finite

interval of length 2h by its integral average as

,\-'Y” + }-*")" = 0 (\,_5)

X. ]
where 271+l

<
1
.Ir-h
1
N

: X.
4 and Li+l

|

The lineari:ation in effect eliminates the singularitv

at x = 0 since the integral average of v has replaced

[ Y ;

-1 the function v in the first 2h interval of Equation {V-2).

i
|
Equation (V-3) can now be written as: [
|
v 1
vitoe }"' = 0 '\"b)

}.’ . [
compariny Equation (V-¢) with the FA standard forn

Equation (IV-3;, we have

;
!
4
4

.
-
Ca
]
-}
(a)
-
-
'
)
-

\./'
A= — |, B = 2.0
X

T

0 find the finite analwrtic solution of Eauation V-

an iteration between the function v in the lineari:e

(4%
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coefficient A given in Equation (V-7) and the solution
nust be made. To ccnduct an iterative procedure, an
initial profile for y over the whole region is first
required. As mentioned in Chapter IV, a simple choice
for the initial profile is the profile that satisfies
the boundary condition at y(0) = 0, and v(2) = 2, e.g.
the line v = X, The initial profile for y' is obtained
by differentiating the initial profile for vy, that 1is
y' = 1
Once the coefficients A, B, and C are known for each
finite subregion, the locally linearized differential
equation can be solved analytically for each interval.
Once the new or improved solution for v and v' at each
node are obtained, the values of vy and y' for each

interval of length 2h can be updated using Equations

(IV-22), (IV-23) or

v +dyv.+v.

- 1-1 71 i+l
v =

1 6

(v-82
vi oJ+dviev!
gre 2zl 71 ~i+l
"1 0
where v, vy are the averaze values of the function and
-

its derivative over an interval of length 2h where the
nidpcint is the {th node. Substitution of Equaticn (V-8°
into Equation (\V-3) gives the new iterative values for

A, 3, and <. Thais =

3
)

ocedura is repeated until the

"

convergence is achieved in a d2sired range.
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The analvtic solution for Equation (Vv-4) is

v™ = IX (V-9)

which is infinity x = 0. Theretore, the shooting
method cannot be used for this problem because, no matter
how large the missing initial condition is taken, it will
never converge to the exact value. Thus, for this problem
the FA solution will be compared with the FD solutions
{ Tables (V-5 and (V-0)) and the exact sclution. [able
V-4) shows the results for h = 0.05. The number Of
iterations for both metgods is 8.
v-2-1. Interval Average approximation V'S Quasli-
linearization

This technlque which is used for linearizing the
nonlinear terms of the Jifferential equation is based
on replacinyg the nonlinear terms bv the integral average
of their values over each finite subregion. However,

i1s mentioned in Chapter [I, the auasil nearization

e

sachnigque consider the nonlinear second order ordinary

differential egquation

we function § ocan he expanded i Tavior sev!




Table V-4

\umerical Solutions of Equation (V-3) VS

the Exact Solution with 0.05

X Exact het, 05 w05
0.0 0.00 0.00 0.00
0.2 0.632 0.629 | 0.638
0.4 0.394 0.892 | 0.398
0.6 1.095 1.094  |1.098
0.3 1.264 1.264 | 1.266
1.00 1.414 1,413 11.415
1.2 1.549 1.548 | 1.550
1.4 1.673 1.675 | 1.674
1.6 1.788 1.788 | 1.789
1.3 1.897 1.89"  {1.39"
2.00 2.000 2,000 | 2.00

Lterat ions 3 8

g e
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Table V-5
Comparison of Numerical Solution of Equation (V-3) using

the FD and the FA Methods with Varying Grid Sizes

r‘! L L AR A Fixigt ya' | ¢

~a 0.05 0.1 0.2 0.4  Exact
0.0 0.0 0.0 0.0 0.0 0.0
0.4 0.898 0.901 10.907 0.923 0.894
0.8 1.266 1.268 1.272 1.277 1.264
1.2 1.550 1.551 1.553 1.556 1.549
1.6 1.789 1.789 1.790 1.792 1.783
2.0 2.00 2.00 2.00 2.00 2.90

ceration| 3 7 :

Finite Difference

2 0.05 0.1 0.2 0.4 Exact
0.0 0.0 0.0 9.0 0.0 0.9
0.4 0.892 0.390 9.386 0.371 0.894
0.3 1.261 1.265 1.261 1.256 1.264
1.2 1,548 1,343 1.54" 1,544 1,540
1.6 1.788 1.733 1.738 1.787 1.738
2.0 2.0 2.0 2.9 2.0 2.0

122 ;aign _ 3 - [ 6 >

T T
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Table V-6

Comparison of % Error of the Numerical Solution of Equation

(V-3) for the FA and FD Methods at x=0.8

h 0.0S 0.1 0.2 0.4

% Error % Error % Error % Error
FA 0.01 0.08 0.23 0.63
FD 0.15 0.31 0.63 1.03
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a given function yo(x) and its derivativative yé(x).
Thus,

fly,y') = f(,voCX), Yo (X)) + (y'(x) - ¥

(V-11)

Substituting Equation (V-11) into Equation (V-10), we

have

Y” = f(yo(x)’ yo’(x)) + (y'(xo) - ,V(;C’())

(V-12)
which is a linear equation.

Applying this technique to Equation (V-3)

)

2
4

V’
vt = . L = f V,V'
2 (v,v")
vt -2y!
YU S ) - v (0) (==2) sy (x)
7s ‘0
v'z
‘0
- v () (s
v
vix)
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for which
Zy' ,V'Z
A= —,B=-—=5,C=0
Yo Ys

Table (V-7) shows the comparison between quasilineari-
sation and interval average approximation for h = 0.1.

The table shows that for this problem the interval average
approximation gives more accurate results.

From Table (V-5) we see that the number of iterations

are about the same for both finite difference and finite
analytic method, and vary between 8 iterations for h = 0.03

to 5 iterations for h = 0.4.

Again, more accurate results are obtained with a smal-
ler grid size. The finite analytic solution again proves
to be more accurate than the finite difference solution

for all grid sizes as shown in Table (V-6) where the

solution is compared at x = 0.8.

V-3. Nonlinear Ordinary Differential Equation]]

A5 the next example, consider another nonlinear

dJifferential equation:

N (V-13)

with the boundary conditions

yid) = vel) =0 (Vo1

tn
cr

b]
D

As before, the nonlinear term nu
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Table V-7

Comparison of Interval Average Approximation (a)

and Quasilinearization (b) 1
a b
X v y
0.0 0.0 0.0 :
0.4 0.890 0.862
0.8 1.263 1.248
1.2 1.548 1.540
1.6 1.738 1.784 j
2.0 2.00 2.00 jj
%
taximn 0.223 3.56% |
i
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locally linearized. In order to write Equation (V-13)

in the standard form, we consider the small subregion as

shown below

l's.—[—3~|

'S

In this small subregion, the nonlinear term which is
the exponential term, can be expanded about the point (S).

Therefore

\r

v Y
e = ¢ P . (y~yp) e P v ... .. (V-15)

Approximation of Equation (V-15) is known as quasi-

linearization (17 ) substituting Equation (V-15) into

Equation (V-13), one has the locally linearized equation.
\4

v
vt - e Py = e P(loy)) (V-16)

Comparing Equation (V-16) with Equation (IV-3) gives

Yo Yy
A=90,B=-ce¢ C=e "(1-v,)

Equations(V-13) and (V-14) have an analvtic solution
= 7 > ~ ¢ 1
v = -log2 + 2 1lod< Sec(s(x-%))]

where C = 1.3360357
This equation has been solved by many authors (18 ),

(22). Azain, to impliment this iterative nrocedure, an

U e
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initial guessed solution 1is needed. A simple choice
could be a polvnomial that satisfies the boundary
conditions y(0) = y(1) = 0 or y + x(x-1). Numerical
solutions of (V-13) are compared with the exact solution
in Table (V-8).

Both FA and FD methods with a grid size of h give
good results after 2 irerations up to 5 decimal points.
The time used for both methods is the same (about 3 SRU).
But, when the length of the finite subregion is increased,
the FA method gives more accurate results than the FD me-
thod. In the shooting method, if the exact missing ini-
tial condition is not guessed, convergence cannot be
achieved. The sensitivity of the solution to the missing
initial condition can be demonstrated. For example, even
when the missing initial condition is guessed correctly
to three decimal points, ten iterations (shooting) 1is
needed before convergence occurs, and the solution still
has errors as can be seen from Table (V-8). Generally
speaking, the FA method, FD method and shooting method
give close results when the step size is small provided
a good initial guess 1s used for the shooting method. |
The error grows when the step size increases, i.e. less
number of points is used. Table (V-9) shows the effect
of step size (h) on the numerical solution of Equation

(V-13). Table {V-3) shows that for this problem, using

the finite difference method, the error grows when the
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Table V-8

Comparison of Numerical Solutions of Equation (V-13)

P S T Ty

for h=0.02
X Analytic FA FD Shooting
0.0 .0.0000 0.0000 0.0000 0.0000
0.1 -0.04143 -0.04143 -0.04193 | -0.04142
0.2 -0.07326 -0.07326 -0.87326 | -0.07324
0.3 -0.09580 -0.09579 -0.09579 | -0.09575
0.4 -0.109238 | -0.109237 -0.10923 | -0.10918
0.5 -0.113704 | -0.113703 -0.113702 | -0.11363
0.6 -0.109238 | -0.109237 -0.109234 | -0.10915
0.7 -0.09580 -0.09579 -0.09579 -0.09570
0.8 -0.07326 -0.07326 -0.07326 | -0.07315
0.9 -0.04143 -0.04143 -0.04144 | -0.04130
1.0 0.0000 0.0000 0.0000 0.0000
Iterations
or pA 2 10
Shooting|
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Comparison of Numerical Solutions of Equation

the FD, FA and Shooting Methods for Varying
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Table V-9

Grid Sizes

(V-13) using

us

NG R 0.05 0.1 0.2 Exact
0.0 0.0 0.0 0.0 0.0 0.0
0.4 1-0.1092 -.1092 -.1091 -0.1088 -0.1092
0.8 |-0.0732 -0.732 -0.0731 -0.0730 -0.0732
1.00 { 0.000 0.000 0.000 0.000 6.0

FD Method (2 iterations)
h ) 7

< 0.02 0.05 0.1 0.2 Exact
0.0 0.00 0.00 0.00 0.00 0.0
0.4 1-0.1089 -0.1089 -0.1089 -0.1089 -0.1092
0.8 }-0.0727 -0.0727 -0.0727 -0.0727 -0.0732
1.0 {0.000 0.000 0.000 0.000 0.0

Shooting Method (10 Shootings)

NG 0.02 2.05 0.1 0.2 Fxact
0.0 0.00 0.00 0.00 0.00 0.0
0.4 |-0.1092 -0.1092 -0.1092 -0.1092 -0.1992
0.8 |-0.0732 -0.0732 0.0732 -0.0732 0.0732
1.00 10.000 0.000 0.000 0.000 0.0

FA Method (2

iterations)

U
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step size becomes larger. The results of the FA method
interestingly remains the same for different step sizes
as shown in Table (V-9), which shows that the FA solution
1s insensitive to the step size and gives more accurate
solutions than the shooting method. As for the shooting
method, an almost exact initial condition must be used,
otherwise, the solution is unstable and does not converge
to the exact solution. For the FA or FD methods, be-
cause of the nonlinearity of the differential equation,
the solution procedure requires an iterative process.
However, the solution converges with the simple initial
profile that is made only to satisfy the boundary condi-
tions. This comparison shows clearly the advantages of
the FA method over other me thods, especially in the sense
of simplicity of the theoretical approach.

Table (V-10) shows the effects of grid size on the
error produced by using the FA, FD, and shooting method
solutions of Equation (V-9). Again, it is obvious that
the FA method produces less error than the FD and shooting 4
soiutions. Also, it is interesting that the FA solution

for this problem is almost insensitive to the grid si:e.
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Table V-10

Comparison of % Error (at x=0.8) of the Numerical Soiuticn

of Equation (V-13) for FA, FD, and Shooting Methods ]
h 0.02 0.05 0.1 0.2
X % Error % Error % Error % Error
FA 0.01 0.01 0.01 0.01 1
FD 0.01 0.015 0.136 Cc.27 1;
Shooting | 0.68 0.68 0.€8 0.68 |
* |
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CHAPTER VI

APPLICATION OF FINITE ANALYTIC (FA)
METHOD TO FLUID MECHANICS

VI-1., Falkner-Skan Equation

Boundary value problems occur in many fluid mechanics
and heat transfer problems. One of the most important
problems of this kind is the steady two-dimensional flow
of a viscous fluid past a wedge. The problem is to find
the velocity prorfile in the region close to the plate,
Xnown as boundary layer (14). The governing equation of
the problem is known as the Falkner-Skan equation, which
is obtained by similarity transformation from the boundarv

laver equation, and is given as
- 2
£rrr o+ Ff" o+ 3(L-f'7) =0 (VI-1)

Here f 15 the dimensionless stream function, derivatives

of f are taken with respect to the independent similarity
variable -, and 2 1s a parameter of the eguation tha:
signifies different flow geometries or pressure gradient
exerted on the boundarv. 3 > 9 denotes the flow 1is under 3
favorable pressure gradient and 2<) under an adverse pressure
sradient. The boundary conditiong of this flow problem are:

~ =0, £ = ~ = ), £ =9 -~ e 0 -]

l"l.I_:\
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VI-2. The FA Solution

For numerical treatment, the infinite boundary
condition n - = in Equation (V-2) is replaced by a

sufficiently large finite boundary n = n,- Then the line

n can be subdivided into small line segments (Figure (VI-1)).

To implement the FA method, the nonlinear equation (VI-1)

1s first linearized locally. In order to cast the linearized

equation in a form similar to Equation (IV-5), Equation

(VI-1) is rewritten in the following form:
o B ] £ _ 2 ’ ' = .2 ‘Y U
t + fox. 2f Of 2 (Vv )

where fo and fé are the average values of f and f' over
the finite subregion of length 2h. Therefore, in the

standard form of Equation (IV-5)
= . £ = - 2 e -
B BLO , C 2 (VI-3)

o ’

Let f' = g (VI-3)

Thus, Equation (VI-3) becomes
¢' * Ag' + Bg =C

g(d) = Ov g(nn)

"
—

which can be solved numericallv for g in each small

subregion. Since this p ©>lem is ncniinear, the numerical

solution again requires an iterative procedure with an

initial profile of jy satisfving both houndarv conditions.
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i ¢
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2 4

i=1 " £(0)=0,£'(0)=0
(a)
Figure VI-1. Schematic Diagram of Problem

(a) The Whcle Region

(b) A Typical Subregion
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Once new values g at each nodal point are
calculated, the new values B are known for each node.

sut, for calculation of A, pew values for f need to be

Calculated. From Equation (VI-7) is is obvious that

g—ﬁ =g (VI-7) .
thus
D P
fp - fS =J~S dt =j' gd (VI'S)

where s and p are southern and middle points of an

interval of length 2h, as shown in Figure (VI-1). ,q

discussed in Chapter IV, the solution for dependent varia-

ble g in Equation (IV-5) has three different cases accord-

,
ing to the vaiue of AZ - 43. Therefore, for A - 4B < @
eph
= £ i
fD £ + C1 — [pCos qh + gqSin gh] + .
; D +*q :
ph
* C; —— [pSin qh - qCos qh] -
Gy p C,ya -
1 . - VT -
— - 2 *ﬁh VI-9)
P *q P *+q”

which is simplv the integration of Equation r1-8).

,
Similarlv, for A~ - 13 = 0,
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h
C C ce™
= ) mh 2 C
fp = fS * (HI 5:) (e77-1) + (—5 + g) h
(VI-10)
5
and for A™ - 4B >0,
C C
1 .h 2 ,
fp = fS + __l_ em4 + E emzh . _g_ (\I'll)

Values of A and B are the average values of initially
guessed f and . £' over each finite subregion of length
2h. Therefore, A and B can be obtained using Simpson's

integration formula

Egrdf_+f FLedfrefy
As = B s —— (VI-12)

Any initial profile should satisfy both boundary conditions
g(0) =0, g(n_) = 1. If the n_ is taken to be 10.
a simple initial profile is taken as g, © 0.1.
Thus
it n

Jdf = [ 0.1ndn (VI-13)

0 o) .
or the guessed f profile becomes £ = 0.5 "7,

The calculation of the FA method, thus proceeds with
Equation (VI-13) as initial guess.

Since there is no analytic solution to Equation (\Vi-1),
the FA solution is comnared onlvy with the shooting method,

which is the most popuiar technique for solving the

Falknetr-Skan flow problems 7 ). Table (VI-1)

rr.
o
"1

shows the numerical solution of Equation (VI-1)

e s .

3
i
¢
{
4
{
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Table VI-1
Velocity Profile for the Falkner-Skan

Equation using FA Method

n 3 -0.1988 -0.13 0.00 0.5 1.00
0.0 0.0 0.0 0.0 0.0 0.0
1.0 0.1000 0.2163 0.4609 0.6815 0.7785
2.0 0.3818 0.5617 0.816 0.442 0.975
3.0 0.729 0.860 0.969 0.995 0.998
4.0 0.9404 0.979 0.997 0.999 0.999
5.0 0.994 0.998 0.999 0.999 1.000
6.0 0.999 0.999 1.000 1.000 1.000
7.0 0.999 1.000
3.9 1.000
9.9

; 10.0
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different values of 3(-0.1988<8<1). Equation (VI-2)
shows that the domain of problem is (0-«), which cannot
be treated by any regular method of solving boundary
value problems. In order to satisfy the boundary
condition at infinity, it is assumed that for this
problem n = N> £' = 1. Therefore, the infinite boundarv
condition is replaced by a finite boundary. For example,
n, = 10, £' = 1. The value of 10 may be replaced by
other values if the numerical solution does not
asymptotically approach f' - 1. Table (VI-2) shows the
comparison between the interval average approximation and

quasilinearization. The quasilinearization process for

D L AL e A S L L

the Falkner-Skan equation can be done as follows:

2

£ror o+ £ o+ 23(1-£f'7) = 0
2

g" + £.8' + 3(l-g%) = 0 (VI-14)
: 2
5 Therefore, v(g',g) = - fog' - 2(1l-g7).
™
. Using Equation (V-14), and simplifving
K .

glv + fogl - :‘%gog = Srl*gé) l\I“I.S)

,
for which A = fo’ B = - 23go, C =- 3(l+g;). As can te seen
from Table (VI- 2), numerical results are almest identical.

However, quasilineari:ation converges faster than the

interval average approximation bv an order of 2.
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Comparison of Numerical Solution of the Falkner-Skan

Equation using Shooting and FA Methods for g=0.0

OF PLG (Urimeh
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Table VI-2

T oa 0.5 1.0 1.5 2.0
0.0 | 0.00 0.00
2.0 | 0.816 0.826 |
4.0 | 0.997 1.006
6.0 | 0.999 1.009 UNPTABLE. . ..
8.0 | 1.000 0.009
10.0 | 1.000 0.999
. ‘ .
Lt (0)3, O.V4e61900c'1ty OP}4o/fﬁile using Shooting Method
N 0 0.5 1.0 1.5 2.0
0.0 | 0.00 0.00 0.00 0.90 6.00
2.0 | 0.3168 0.8246 0.849 0.3438
4.0 | 0.99" 0.998 ).298 0.2¢0
5.0 | 0.999 1.000 1.000 1.000
s.c | 1.000 1.000 1.000 1.000
10.0 | 1.000 1.000 1.000 1.000
£110) 2. 1699 ).43° ).430
b. ‘Velocity Profile using FA ‘Method

R
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VI-3. Numerical Results

The FA numerical results of Table (VI-1) are
obtained for h = 0.1. The FA solutions are identical to
those obtained by the shooting method to the third digit.
Tables (VI-3) and (VI-4) show a comparison of the FA method
and the shooting method. The comparison indicates that the
FA method is more stable for this probler.

Equation (VI-1) was derived first oy Falkner and
Skan ( 23 ) and was calculated later numerically by
dartree (24). E-er since, because of strong nonlinearity
of Equation (VI-1; its solution has been a challenge to
many mathematicians as well as engineers. Stewartson (23)
found that when 3 <- 0.1981, there are two acceptable
solutions, one with f''(0)<0. In addition, he showed that
if -0.5<3<0, there i3 a family of solutions corresponding
to boundary layer bounded on one side by free streamlines.
Later, in 1966, Libby and Liu (26) suggested a point of
view and a mechanism making the similaritv solutions for
8<-0.1988 physically acceptable, and presented some of
the solutions. The numerical analvsis that Libbyv and
Liu used 1s based on the application of the quasilineari-
tation technique developed by Bellman and Kalaba (19) in
approximating the governing Falkner-Skan equation. In
additicn, the bcundarv condition at infinity is treated Hv

requiring that exponential Jdecav is assured. In

their method, instead of specifving 3 and
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TFable VI-3
Comparison of Numerical Solution of the Falkner-Skan Equation

using Shooting and FA Methods for 8=1.0

~ 0.1 0.5 1.0 1.5 2.0

0.0 |o.0 0.0
5 1.0 |0.7778 0.7769 |
i 2.0 |o0.9732 | o0.9722 UNSTABLE. .. ...
} 3.0 | 0.9984 0.9980
} 1.0 }0.9999 0.9999
| 6.0 | 1.0000 1.0000
} e0) | 1.2326 1.2318

a. Velocity Profile using Shooting Method
An
n 0.1 0.5 1.0 1.5 2.0
0.0 |0.0 0.0 0.0 0.0
w 1.0 |0.7783 0.7916 0.838
2.0 |0.9733 0.9773 0.9897

. 3.0 |0.9984 0.9988 0.999 0.9963
; 1.0 |0 9999 0.9999 1.000
% 6.0 |1.000 1.000 1.000 1.000
:
1 £10) | 1.2345 toorm |1 199 1.870"
; b. Velocitv Profile us:ng FD Method
.
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Table VI-4
Comparison of Quasilinearization and Interval

Average Method for 3=0 An=0.1

n Quasi Average
0.0 0.0 0.0
1.0 0.4609 0.4609
2.0 0.816 0.816
3.0 0.969 0.969
4.0 0.9977 0.9977
5.9 0.999 0.999
6.0 1.000 1.000
7.0 1.000 1.000
8.0 1.000 1.000
Number of 1 g
[terations

Velocity Profile
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seeking f'(0) so that f'(=) = 1, £"(0) is specified and
3 is considered as a parameter to be determined in each
iteration cycle of the quasilinearization scheme.

In the FA method, we have not imposed any condition
in the exponential behavior as n + =. For the values of
5>-0.1988, replacing the boundary conditions at infinity
bv a finite large distance from the wall seems to be
satisfactory, and yields good results. However, for
3<-0.1988, this substitution is unlikely to succeed, and
the solutions obtained do not behave exponentially, i.e.
the numerical scheme works as if the outer boundary were a
fixed wall. The problem with a boundary conditicn at
infinity was studied by Robertson (27), who con-
sidered the linear two point boundary value problem on an
infinite interval. In his study, a numerical methcd, using
a finite difference approximation to the second order
differential equation is given which tests the suitability
of the finite point chosen to represent infinity.
In Robertson's study, the length of the finite interval
is calculated such that the replacement of this finite
interval for the infinite interval would give solutions
with desired accuracy. However, the analysis is only for
. linear equations. For nonlinear problems, one has to
examine the existence and uniqueness of the solution, a

subject which has not been fully developed vet.

Keller (28) is studving the existance and uniqueness of the
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solution of two point boundary value problems

L(y)=-y" + p(x)y" + q(x)y = f(x) has proved that the
existence and uniqueness is guaranteed only if p, q, f

are continuous with q > 0. Therefore, the Falknar-Skan
problem, even when it is linearized, may not have a
solution if the parameter 3 is such that the value of

q 1s not positive. The application of the FA method to the
Falkner-Skan problem for values of B8 must be studied

carefully, and can be a4 subject for further investigatiorn.

For 8 > 0, the FA solution produces satisfactory solution.
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CHAPTER VII
CONCLUSIGONS AND RECOMMENDATIONS

In the present work, the idea of the finite analytic
method introduced by Chen and Li, (4) 1is developed and
extended to the solution of linear and nonlinear two
point boundary value problems. In general, the FA method
is better than the finite difference method for examples
treated. In particular, the FA method has the following
advantages: it is relatively insensitive to the grid si:e,
more accurate since truncation errors are eliminated or
minimized, and more stable. In addition, the FA method,
because of its continuous functional solutions 1in the
finite subregion is differentiable. This is a great
advantage over other methods, since approximation of
derivatives by finite difference or finite element
formulae, in general, introduce additional errors in
addition to the errors already made in the solution.

In the case of nonlinear boundary value prcblems,
since the equation is nonlinear, both FA and rD me&hods
require linearization. 1In the present study, the non-
linear term has been replaced by a constant equal to its
integral average in each finite subregion. If the finite
subregion is small, this approximation is indeed very

good. For large subintervals, the approximation will

Ry
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produce some errcr. However, it is generally less than
the error produced by a finite difference method. On

the other hand, any second order nonlinear ordinary
differential equation can be locally linearized. In the
FA method, they are locally cast into a linear second
order equation with constant coefficients. Therefore, the
FA solution does not require much analytical work and can
be implimented easily. Replacing the nonlinear term by a
constant is the simplest kind of approximation.

Obviously, this approximation can be improved by using

a polynomial of arbitrary degree as in approximation cf
the function in each finite subregion. This will improve
the accuracy of the FA solutions, but requires more
analytical work, and could be a subject for future
development of the FA mechod. A very important feature

of the FA method is its stability as compared to the FD
method and shooting method. This advantage can be seen in
Chapter VI where a comparison is made between the FA
method and shooting method for different grid sizes.

The implimentation of the FA method irvolves a
relatively simple numerical algorithm compared with that
used in existing methods in solving boundary value
problems. The principle of the FA method is very simple
and the analytic part of the method consists only of

solving a linear second order ordinary differcrtial

equation with constant coefficients.
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APPENDIX

THE FINITE ANALYTIC SOLUTION OF A
NONLINEAR SECOND ORDER ORDINARY
DIFFERENTIAL EQUATION
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30188+CC (201),T(201) ,ER(201),P(201),34{201),P¥8(201) ,AD2ZL(201),PP{2C)
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00250
00260
00270C
00280C
00290C
00300
00310
00320
00330
00340
00350
00360
00370
00380C
00390C
pouQocC
0041C
00420
00430
00440
00350
00460
00470
00480
00490
00500
00510
00520
00530
00540
00550C

oRIaIAL T )
OF PCOR k-t .

co=1.0
PRINT 100,DETA,RO,ZPS
‘t"s..‘t“‘.‘ltl".“t‘...‘..‘tt“““‘.‘.".‘t.““.““..’

§2T THE IHMITIAL PROFILZ cacecssascccccane
“!““‘O“'-‘.lt".t“"-“.t.“.“‘l.t“‘.‘t““t...‘.‘t“-
Do 2 I=1,H021%

BTA (T)= (I~-1)*DETA

G(I) =SQRT(0.1°5TA (1))

P(I)=0.1

PP (1) =208 (G (1) **3) /3.

PO(X)=P ()

PPO(I) =P2(I)

2 GO {L)=G(I)
lt".“.“tt‘t‘t.l“‘t.i“.“.tt.‘..'0‘..0#.t““.t.t.lt“.“
PIKD THY® ROOQTS OF CHABACTESRISTIC EZQUATION . eoececocsse-"
‘O".tt.“'Ot“"‘..l.‘.tt‘...t‘..“.“‘.OOt‘..‘.“t.“.‘.‘t‘
10 £o 3 I=2,%0

PA(I)S(?O(I-Y)05‘?0(1)0?0(101))/6.

SA(I)-(GO(I—1)v“‘GO(I)060(101))/6.

P?A(I)=(!PO(I-1)40‘?90(!)*??0(101))/6.

A(I)=FPA (L)

B(I) s=2¢3ETA*GA (1)

:(I)--Batxt(1+ca(1)-a2)

IP(C(T) .32Q.0.0) G3 TO 13

cL{I)=C(1)/8 (1)

Go 10 3

13 CL(X)=0.0

3 DEL (I) =A (1) *2-8%8(I)

DO 41 I=2,NO
TP(DEL(T)) 29,39,49

"“U‘.“."‘.l‘.‘.“..‘....“‘.“..“.‘.l“.‘...‘...““....‘.

00560C COEPPICIENTS aP THE TSI-DIAGONAL 2ATBIX IP THE CBARACT ERISTIC

00570¢C
105840C
30590
00600
00619
00620
00630
po6u0
00650C

BQUATION HAS £90 ISAGINARY 28D DISTINCT R00TSececcccssassoss

.‘l‘.“‘.‘.‘...‘.".....‘.““.“‘S‘.....‘“‘..“.““l.‘.“.‘.

29 ADZL(I)==DEL(I)

E(I) =-A(I) /2.

Q(I)=SQ22T(AD2L(T)) /2.

CS(I)ssx?(?(I)'DETA)/(Z*:QS(Q(I)'DSTI))

cs(x)ssxp(op(z)-nzrx)/(zoCDS(Q(z)-ozrx);

GO TO 40
I‘.‘.‘.““.‘..l.‘.‘.“‘I.‘..“‘.“‘.““..8'.“'.‘.‘--‘.‘.‘..‘

00660C COEPPICIENTS ap THZ TRI-JINGONAL MATRIY IP THE CHARACTERISTIC

00670C

ZQUATION 3AS TW0 REAL AND =QUAL ROOTSecosessensoccoesncnscnce

00680C t.to‘cat‘tutlo..t.o“.o-.cotcc"tc“'.t‘oon“.u‘ctta‘.-ct-t.co‘

00690
00700
00710
20720

39 pm(I)==A(I)/2.
CS(I)’BX?(PH(I)‘DBT!)/2.
CH(I)'BXP{~?H(I)‘DBTI)/2.
GO TO 40

00730C .‘u:t-ooo.--t"c‘-t“.totto‘to.‘t‘coct.‘t‘-o“ott‘c--s.o-.t.t::

30780C COBEFFPICIEZITS OF T42 TRI-JIAGONAL sATRIX I? THE CHABACTERISTIC

00750C EJUATIOY HAS TW4O RZAL AND DISTINCT BOOTSicecescoccaosccsarvos e
207640C o‘cotc-o.c-.o-a-c---:.o-a-..:a-‘--o‘.a.oon.ct-..-.t.-a.-tt..asc

00770
00780
00790
00800
00810
00820
00830
00840
00850

49 P!1(I)-(SQRT(DBL(I))-A(I))/Z.
PHZ(I)'(“SQRT(DSL(I))‘I(I))/Z.
CN(I)'\./(E!?(PH2(I)‘DZ!A)0219(?!1(1)‘081!))
CS(I)-EXP((PH1(I)0PH2(I))‘D!Tl)‘C!(I)

40 CC(I)’CL(I)'(CS(I)OCI(I)‘1)

T(I) s-1.0
31 CONTINOE
Go t0 28
73 b0 77 1=2,%0
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00860 CS(I)’!XP(-A(I)‘DBTA)/(!!P(-l(!)‘b!?l)01)

00870 CN(I)=1./(EXB(=A(X) *DETA)+1)

00880 T(I)=-1.0

00890 77 CC(I)'C(I)‘D!T]‘((1-!1?(-3(1)'DST!))'C!(I))/)(I)
00900 28 CC(1) =GO(1)

00910 CC (¥P1)=GO (¥P1)

00920 cs(¥?1) =0.0

00930 C¥(1)=0.0

00940 T(1 =1.0

00950 T{¥P1)=1.0
00960C “““‘“t‘..t““t““‘.““‘t.““.‘.‘tt‘ttt“t.‘.O...“ll“t‘

0097¢C ....CALL TR® TRI-DIAGONAL SUP20UTIYE TO PIND ¥EW FALUBS FOR....

oogaoc ‘l‘..l....Q..ll’...'.:az PUHC’IOH'...Q.'.‘Q..Q'..Q...l.h...l.'.,
0099¢ CALL TDMX (1%,¥P1,lS,T,5%,3C,5)

01000C ‘.t“‘.‘lt‘.t"-.-t“t‘t“.t“l.‘.“t“.‘.tO“‘tltt“‘..‘.tt.‘-

01010C PIND NSW VALUES FOR DERIVATIVES USING ¥EZW 7aLDZS OF THE FONCTION
01020C .t.“.t‘tt“‘.u.t‘lt‘.‘!..‘Ot“““““l“““t‘..“.t‘.t.tl“‘

01030 DO 42 I=2,NO

01080 IP(DEL (L)) 27,37,%7

01050C tt‘at‘at.ooc.-o-aacutactaaastccot‘ta..-coooooocooa:.-o.oasovo:.

01060C N¥EW VALOES POR P I?P DEL(I) IS HEZGATIVEZ.aeceeecssecssesans
01070C “tt.““““tt‘.-t..t.'...ttt“t““‘..““"..l“t.‘....t.t‘t
01080 27 lC1(I)=G(I-1)-C1(I)

01090 ACZ(I)-(6(101)-6(1-1)#ZXP(Z‘P(I)‘DBTA)‘COS(Z'Q(I)‘D!Tl)

011004+ (ZXP (29 P (I) SDETA) *COS (2*Q(I) *DETA) = 1) sCL (1)) / (EXP (2%D (I)*
0111000211)‘SIH(Z‘Q(I)‘DBT!))

01120 P(I)*?(I)'!!P(P(I)'DB!A)‘(!C1{I)‘COS(Q(I)‘DETI)0!C2(I)‘
01130fSIM(Q(I)*D!11))OB!?(?(I)‘DBTA)‘(-Q(I)‘IC1(I)‘SI!(Q(I)'D!TL)o
01140+ AC2(I) *Q(I) *COS(Q(T) *OETA})

01160 GO TO a2

01170C ‘.‘-.tot‘ttt.oot-ao.tao-ac.tt“‘t‘ctsaactttat-.o‘t-.-'tn.otto-ac

01180C ¥EW VALUBS FOR P IF DBL(I) IS 2ERC:iecssvasccacvansacocas.
Q1190c .““.“t“‘.‘t‘.‘.“O“..‘tt"‘.t‘l...OOO.“O..‘t‘..a-“‘t.ttt‘
01200 37 BCY (I)=G({I-1)=1./G52(I)

31210 BCZ(I)-(6(101)-6(1-1)OEXP(ZtPH(t)-DETl)-(1-EIP(2‘PB(I)‘D!?A))
012200‘CL(I))/(2tD!TA-E!?(2*Pa(I)'BET[))

01230 P(I)=(BC2(I)+PH (I)*8Z1(T)+PH(I) #BC2 (I) *DETA) *2XIP (PN (I) *DETA)
01250 30 TO &2

31260C tua-a--o.-.--c..‘c-c.ta--o-aocooct‘.totttto0ot.'..o-a-‘oacc.onta

01270C ®E¥ VALDZS POR P I? DEL(I) IS POSITIVZececscccsssscocscannae
01280C -ooc-ooo“.-o.oa-.a---‘o.-taoa‘t“‘st-ootoot-..ooo‘oa.tt‘ot---t.
01290 47 CC1 (I)=2XIP(2+P%1 (1) *DETA)

01300 CC2(1) =BX2(2+Pn2(X) *0ETY)

01310 CP1(I)'(G(I°1)‘CC2(I)-G(I01)-(CC2(I)-1)‘CL(I))/(CCZ(I)-CC1(I))
31320 C?Z(I)'-(G(I-1)'C:1(I)*3(101)~(CC1(I)-1)'CL(I))/(CCZ(I)-CC1(I))
21330 P(I\’CP1(I)'PSI(I)‘Z!?(P!1(I)'D!Th)0CP2(I)‘P!2(I)‘!XP(PHZ(I)‘B:TI:
91350 42 CONTIRO2

01355 P(1)ﬂP(Z)08!11‘081&’??[(2)‘G(Z)-B!TA‘GA(Z)‘!P(2)

01360 G0 0 79

91370 78 CO 988 I=2,M0

01380 lC1(I)'(G(Ib1)‘G(I-1)-2°C(I)‘D!Tl/l(l))/(!!?(-Z‘l(I)
31390+sDETA) ~ 1)

01400 88 ?(I)'°AC1(I)'I(I)‘!XP(-!(I)‘DBT!)’C(I)/I(I)

01410 P(1)--lC1(2)'l(2)03(2)/l(2)

01320 79 ? (NB1)= (G (NP1) =G (%0)) /DETA

01430 DO 52 I=2,%0

214830 I?(B2T1.2Q.0.0) GO TO k} )

016450 IP(DBL(I)) 91,92,93

01860C co-c‘oo.ttc-ooooc‘ct.-.o.oaacat-t-.toatt.a.‘o‘ttoto.ot‘oo

01470C N®¥ VALUES rog PP I[P DEL IS NEBGATITReoacsascannns
01380C o.‘ncc‘o.oc‘.-‘ca-cooa.oo.o‘oco‘o-oc.ca-.cco-‘-.ooo-‘.ooc

e b e e ik ot A
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01490 91 P?(I)'!?(I-1)0!:1(I)‘B!P(P(t)‘b!rl)'(?(l)'COS(Q(I)'D!Tl)o
0150000(1)‘51!(0(1)'DZTA))/(P(I)3'200(1)"2)01C2(I)‘BXP(P(I)‘D!TL)‘
015100(9(1)‘513(Q(I)‘DSTA)-Q(I)'COS(Q(I)‘D!Tl))/(P(I)“ZOQ(I)"Z)-
015200AC1(I)‘P(1)/(P(I)“ZOQ(I)“Z)OLCZ(I)‘Q(I)/(P(I)“Z'Q(I)"Z)f
01530¢DBTA*CL (I)

51540 GO TO 52 '

01550 92 PP(I)HP?(I-1)’(BC1(I)/PH(I)-BC2(I)/(PH(I)"2))'(!XP(PH(I)'D!TA
015600)-1)bDBTQ'(BCZ(I)‘BlP(PH(t)'DBTl)/PH(I)OCL(I))

01570 30 TO 52

21580 93 FP(I)=PP(I-1)0:P1(I)‘!XP(PS!(I)‘D!Tl)/?!1(I)*DETA‘CL(I)
31590+¢C22 (L) *EX? (PN2 (I) *DETA) /PN2 (1) ~CP1 (1) /P31 (X)~Cp2 1I) /PN2 (1)
01600 GO TO 52

01610 35S C2 (I)=BXD (2% (-PA(I)*DETR))

01620 FP(I)SF?(I°1)#DET!‘((G(t-1)'C2(I)-G(I+1))/(C2(I)-1))0

01630+ (SX2 (=PA (I)*DETA) =1) ¢ ((G(I+1) =G (I-1)) /(C2(I)=1)) /(-EA(I))
01640 52 CONTINUE

01650 PP (NP1)=PP (¥0) +DETA*G (¥O)

D1660C s=+PINYD THZ 23IRO0BS AND PRINT 0UT THE PINAL SOLUTICH®s*sesssssse
31670 DO 6 I=2,NC

91680 6 ER (I) =sABS{ (SO (I)-G(I)) /S(I))

21690 DO 7 I=3,H0

01700 IP(ER(2) ~ER{I)) 23,23,7

21710 23 23(2)=2R(I)

01720 7 CONTIVQE

01730 IP(ER(2)-2PS) 33,33,22

217460 22 IF(T3-XX*CO) 15,16,15

21750 15 DO 8 I=1,4P1

01760 GO(I) =GD (1) +GAXS(G(I)=-5d(I))

01770 PPO(1)=PPO(I)+GAns (¥P(I)~FPO(I))

31780 8 PD(I)’?O(I)OGAS'(P(I)'PO(I))

01790 TBsTRe?

0i800 60 TO 10

01810 16 CO=CO+1

91820 DO 9 I=1,%Pt

01830 GO(I)’GO(I)*GAH‘(G(I)-GO(I))

01840 FPO(I) =FPO (I) +GAN«(FP(I) -F20(I))

01850 9 PO(I)=FO(L)*GAX* (P (I)~-FO(I))

01860 PaIyT 120.(21&(1),G(I),!(I),I=1,!P1,5)

01870 30 TO 10

01880 33 PRINT 125, (ETA(I) ,G(L).F(I),I=1,NP1)

01890 PRINT 1u40,TR

01300 100 POBHAT(52.'0!?!8‘,?5.2/5!.'!0!',13/5!,'ZPS",
01910+P13.6)

01920 110 PORSAT(SI,*ETA*,15X,%50*,15,*F0")

01920 120 PORMAT(5X,PS5.2,3X,213.6,51,P13.6)

01940 125 FOBYAT(S%,75.2,5%,213.6,51,713.6)

01950 130 FORNAT (15X, *NG SOLUT ION®,SX,®DEL=*,P13,.6)

01960 140 PORAAT(1SX,*TR=*,P8.0//)

01970 50 r0 1

01980 ©ND

01990C t..'-.‘ot‘o‘.-c..t-ottoott.tt.‘tct.a.t‘-ttcttttot‘tu.tc.‘ttt‘so
02000C SUBROUTIB® TOMX WdICH SOLVES A SYSTEAN C¥? LINZAR Z2QUATIONS...
02010C S EECEAI00SEAESEENESEETEIEINSSSPES LR IEECEESSESOSEIRINLINRETESSS
02020 sSUBaOOTIYE TOMX(IP,L,A,3,°5,0,7)

02030 DINZNSION A(201),B(ZO1),C(201),D(201).'(201),8211(201).
02060¢GARIA(20Y)

02050 BETA (IPV=B(IP)

02060 GAMBA(ITF) 0D (IP7) /BETA (IF)

02070 IPP1=LPe?

02080 DU 1 I=IPP1,L

02990 BETA (I)=B(L)=~A(I)eC(I-1)/B2TA(I-1)
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CHAPTER 1
INTRODUCTION

Many initial value or boundary value problems, in an
engineering process may involve complex material properties,
complex geometry and boundary conditions and defy the
analytic solution. Engineers thus resort to numerical
methods to obtain approximate, but acceptable, values of
the unknown quantities to a discrete number of points in
the region. There are already many established numerical
methods available for solving ordinary differential equa-
tions (ODE) and partial differential equations (PDE).
Finite difference and finite element methods are perhaps
the most widely used numerical solution schemes. Generally,
in a numerical method the entire problem is broken up into
smaller subregions or elements in which discrete points or
values are defined. A system of algebraic functions inter-
connecting the nodal values at these nodes is derived from
the approximation given to the governing equation. How
this approximation is made, distinguishes one method
from the other.

The finite element (FE) method is a numerical method
in which a functicn is chosen for each subregion to approxi-

mate the relation among nocdal values defined in each
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element. These approximation functions are normally
polynomials of a lower degree and depend on the geometry
of the element and the location of nodal points. The
nodal values at these points are the unknowns of the
problem. In the finite element method the approximated
function in each element is made to satisfy the governing
equation in an integral form either by a variational
principle or a weighted integral. The substitution of
the approximate function intc the integral form of the
governing equation for all elements yields a set of equa-
tions whose number is equal to that of the unknown nodal
values. The solution of these equations for the unknown
nodal values represents the approximate solution to the
problem. Zienkiewicz [1] showed that the finite element
is fairly stable. However, the derivative of the finite
element solution may become discontinucus unless further
approximation or high degree of the polynomial is used.
In the finite difference (FD) method the functional
relationship between a nodal point and its neighboring
ones is neither obtained from the analytic solution nor
from the approximate functional forms of the differential
equation; instead, they are obtained from the different
approximation, which essentially is based on the trun-
cated Taylor series expansion of the dependent variables.
The finite difference approximation of the differential

equations can be written for each unknown nodal value




which is interrelated among neighboring noda’ values. Thus,
unknown nodal values will be governed by the n finite dif-
ference equations. This set of the algebraic equations can
then be solved as in the case of the finite element method
providing the approximate numerical solution. The common
difficulty with the finite difference (FD) method, depending
on the partial differential equation, is the stability,
accuracy, and rate of convergence.

The high-speed computing machine has enabled scien-
tists to solve complex problems. This capability has,
in turn, stimulated research in numerical analysis since
the effective utilization of computation depends strongly
upon the continual advancement of research in relevant
areas of mathematical analysis. A good numerical method
thus must be able to provide numerical solutions at any
point of the problem domain such that the solution is less
dependent on the grid size and is accurate with the least
truncation errors. Furthermore, the numerical scheme must
be stable and have a fast rate of convergence. In the
present investigation, a numerical scheme called the
finite analytic (FA) method is investigated.

The finite analytic (FA) method is a relatively new
numerical method for solving the ordinary and partial
differential equations, developed recently by Li and
Chen [2] and Chen and Li [3]. The basic idea of the FA

method is to incorporate the analytic solution in the




numerical solution of partial differential equations.

The FA method is neither the finite difference (FD) nor
the finite element (FE) method. The FA method utilizes
the local analytic solution of the ordinary and partial
differential equations obtained for small subregions of
the problem. To implement the finite analytic (FA)
method, the domain of a complex problem is first sub-
divided into simple subregions in which the problem may

be solved analytically. Secondly, from the local analytic
solution an algebraic relation between a nodal value in
the subregion and its neighboring nodal values is obtained.
If the problem is divided into n subregions there will be
n independent algebraic equations to be solved. The solu-
tion of the system of finite analytic algebraic equations
thus provides the numerical solution of the problen.

Li and Chen [2] and Chen and Li [3] have shown that
the FA method has several advantages over the finite dif-
ference (FD) and finite element (FE) methods. Firt, the
FA method is relatively less dependent on grid size and
secondly, the system of FA algebraic equation is rela-
tively stable. Thirdly, the FA solution is differentiable
in any direction and is a continuous function in the solu-
tion domain. The disadvantage of the FA method is that
the method requires analytic analysis.

In the present investigation the FA method is further

explored and developed by applying the FA method to solve




the Poisson equation. In Chapter II, previous works re-

lated to the FA method are reviewed. Since the FA
method is relatively new, no previous works done identi-
cally in the method resemble the finite analytic method.
However, some numer.cal methods, that are found to be
partially similar to the finite analytic method, are
mentioned. In Chapter III the principle of the finite
analytic (FA) method is outlined. Chapter III describes
the basic principle of the finite analytic (FA) method
for solving partial differential equations. In Chapter
IV the finite analytic (FA) soluticn is derived for the
Poisson equation for different types of subregions. Chap-
ter V illustrates the FA solution of a two-dimensional
steady-state heat conduction in a square region with uni-
form energy generation. Ia this Chapter the FA solution
to the problem is compared with the exact, finite dif-
ference (FN), and the finite element (FE) solutions. The
application of the FA method in solving the Laplace equa-
tion for complex geometry boundaries is given in

Chapter VI. This problem can be considered to be the
heat conduction problem with irregular solid geometry

or the potential flow problem in a contracted channel.
The last Chapter presents summaries, conclusions and

suggestions.



CHAPTER 1II
PREVIOUS WORKS

As already mentioned, analytic methods for partial
differential equations are usually restricted to very
simple geometries and boundary conditions. For the more
complex problems, numerical methods must be used to solve
the problen.

The: finite difference (FL) method which is derived
from the truncated Taylor series expansion was used for
ordinary differential (ODE) equations by Euler [4] in
1768. For partial differential equations tne first com-
putation of the finite difference methods was probably
carried out by Rung [5] in 1908 who studied the numerical
solution of the Poisson equation. At approximately the
same time Richardson [6], in England, was carrying on
similar research. 1In 1918 Liebmann [7], in considering
the finite difference approximation to Laplace's equation,
suggested an improved method of iteration.

The "best'" 9-point finite difference formula was
derived by Greenspan [8] which is perhaps one of the
most accurate numerical solutions for the Laplace equation,
In the 9-point finite difference formula the solution of

the center nodal value located (i,j) is made as a function




of the immediate surrounding 8 neighboring nodal values
located (i,j*1), (i#l1,j), (i+1l,j*), and (i-1,j£l). How-
ever, the similar derivation has not been carried out for
the more complex equations. Also it may not be possible
to derive such a similar finite difference formula for
the representation of the derivative for the dependent
variable at the center node as a function of the neigh-
boring 8 nodal values.

The finite element method is the numerical method
based on a variations principle or an intecgral approxima-
tion for a small element of the problem i . which the
solution is represented by an approximate function, usually
a polynomial. The name "finite element' method was first
introduced by Clough [9] in 1960, when he solved the
two dimensional Poisson equation numerically. Concept of
the finite element method was further developed after
1963 when Besseling [10], Melosh [11], Fraejs de Veobeke
[12], and Jones [13] recognized that the finite element
method was a form of the Ritz method and confirmed it as
a general technique to handle elastic continoum problems.
In 1965, the finite element method received an even
broader interpretation when Zienkiewicz and Chevny [14]
reported that it is applicable to all field problems which
can be cast into variational fcrm.

The finite analytic method is a numerical scheme

based on the analytical solution obtained for a small




subregion of the problem in which the governing equation

is locally approximated or linearized but retained the

differential form. The numerical solution of the problem
is then, obtained from the assembly of all analytic solu-
tions. The idea of the finite analytic numerical method

including element analytic and line analytic was estab- 1

lished by Li and Chen [2] in 1978 and, Chen and Li [3] in d

1979. Naseri-Neshat [15] then applied the FA method
further to two dimensional Navier-Stokes equation, and
demonstrated that the FA mechod is made more stable and
accurate for elliptic partial differential equations
even at higher Reynolds number.

As it was mentioned the FA method is relatively :
a new numerical solution scheme that utilizes the local
analytic solution of the ordinary or partial differential
equation. There are some numerical methods similar to
the FA method, but there are some basic differences. Many
methods similar to the finite analytic method are based
on the concept to reduce the governing partial differential
equations to an ordinary differential equation in one di-
rection while the FA method retains the partial differen-
tial form. Some of these methods similar to the FA |
method bear the name of Telenin's method, the method of

lines (MOL), and Fourier series (FS) methods. Roach [16]

[ T

in his book mentioned the Fourier series (FS) methods.

The Fourier series methods are based on the fact that an
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exact solution to the finite difference equation can be
expressed in terms of finite eigen function expansion
while the FA method does not involve the use of finite
difference approximation in its formulation. Basically,
the Fourier series methods involved breaking down a com-
plex problem into simpler problems but the simpler prob-
lems are approximated by the finite difierence operator,

which is the source of the truncated error.
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CHAPTER IIlI
PRINCIPLES OF THE FINITE ANALYTIC METHOD

In this Chapter the basic idea of the FA method as

outlined by Li and Chen [2] is introduced. Consider a

partial differential equation L(y) =-¢, where L is any

partial differential, linear or nonlinear and g(x,y) is
an inhomogenious term. This partial differential equa-

tion (PDE) is to be solved in region D, as shown in Figure

(ItI-1), with the boundary conditions and/or initial con-

ditions to be specified so that the problem is well posed.

If the analytic solution to the partial differential equa-

tion is available, then there will be no need for the

numerical methods. However, in many physical and engi-

neering problems, finding an analytic solution due to

either the complexity of the equation or the irregularity

of the problem domain is not readily available. Therefore,

a numerical method such as the finite analytic (FA)

method may be used to obtain a numerical solution.

III.1 The Principle of Finite
Analytic Method

The basic idea of the FA method is the incorporation

of local analytic solutions in the numerical solutions of

partial differential equations (PDE). The total region
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Figure (III-1). Region D
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D is decomposed into many small rectangles, as shown in
Figure (III-1). The nodal points intersecting the coordi-
nate lines are denoted by, for example, pcint P, (i,3).
A typical subregion of the problem with node points p(i,j)
is shown in Figure (III-2), where h = Ax and k = Ay are
grid size in x and ¥ directions. The eight neighboring
node points surrounding the point p are denoted by the
subscripts EC (east central), WC (west central), SC (south
central), NC (north central), NE (northeast), NW (north-
west), SE (southeast), and SW (southwest). These points
correspond to the points (i+l,j), (i-1,3j), (1,i-1), (i,ji+1),
(i+1,j+1), (i-1,3-1), (i+1,j-1), and (i-1,j-1) respectively.

Once the region D is subdivided into simple rectan-
gular subregions, an analytic solution in a single subre-
gion may still be difficult, such as nonlinear partial
differential equations like the Navier-Stokes equation.
Since, the subregion is small, the local linearization may
be made to obtain an approximate solution. The finite
analytic solution of the Navier-Stokes equation was solved
by Naseri-Neshat [15]. When the region D has been divided
into simple rectangular subregions, the local approximate
analytic solution may be found for these simple regions
provided the boundary and initial conditions in each simple
subregion are properly specified.

In this present investigation only the linear partial
differential equations, namely Laplace and Poisson equations

with linear boundary conditions,are considered.
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Figure (III-2).
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I1I.2 The Finite Analytic
Soiution to a Subregion

Consider a simple subregion, as shown in Figure
(I11-2). The elliptic partial equaticn L(y) =-f may be
solved analytically for the subregion with specified boun-

dary conditions, and the nonhomogeneous term £ as

‘1’ = f(fN(x)’ fs(x): fE(Y)’ fw()’) ,h,K,x,y,t:)
(I1I-1)

where the fN’ fS’ fB’ and fw are specified boundary con-

N s

are functions of x while the east and west boundary con-

ditions. The north and south boundary conditions £

ditions fE and fw are functions of y. For the purpose of

the numerical solution,the boundary functions fN’ fs, fE’

and fw may be approximately expressed in terms of the nodal

values along the boundary such as:
f(ﬂ)Nw) ‘bNC’ 'bNE, h, x),
Ehngs YEer YsEr Ko
(IT11-2)

£(Vgys ¥sco Ysp» o

fchW) WNC) wSW’ k’
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The functional relationship between the unknown values

of the dependent variable y at any interior point (x,Y)
of the local subregion in terms of its surrounding boundary
points ¢EC, wwc’ ¢NC’ Wscp ¢NE’ wva ¢SE- and wsw can be g;

obtained as,

y = f(wEC’ wwcy wNC’ wscy wNE, wNws wSE’ wa:

|

|

}

h, k, x, ¥, &) (111-3)

1

| which is the basic finite analytic formula. For linear
operators such as the Laplace operator, the 9-point FA
solution for the interior point at P has the form

+ ¢ * CNE YNE

vp = Cpc Yee * Cwe Ywe * Onc ¥nc * tsc Vsc

+ C (I11-4)

* Caw vaw * Cse ¥sg * Csw Ysw T “ep
where the C's are the finite analytic coefficients whose
values are obtained from the local analytic solution. For

] example, CEC denotes the coefficient multiplying the east

center node value VEc» CGp is the inhomogeneous part of

the local analytic solution. Equation (I11-4) is an al-

gebraic equation relating to the interior nodal value ¥p

to its surrounding eight nodal values. It should be noted
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that equation (III-4) is obtained from the analytic solu-

tion rather than from the finite difference or finite ele-
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ment approximation of the partial differential equation.

The same finite analytic procedures may be applied
to adjacent subregions where the boundary nodal point,
say EC, is considered as the interior point p. Thus, in
general, we have n equations similar to equation (III-4)
for n unknown nodes (i,j) in the entire region D.

They may be written as:

+ C

b5 7 Coen, Yie,s T Cien,g Yie1g T CiLge1 Yign

+ C

+

Ci -1 ¥i,5-1 * Ci+1,5-1 VYi+1,j-1 7 Visl,i4l

bie1 541 * Ci-1,5+1 Yi-1,5+1 7 Gi-1,5-1 Yin1,5-1

+ C. .(g) (111-5)

where i = 1,..IM,and j = 1,..JN. The system of equations
given in equation (I1I-5) is the finite analytic represen-
tation of the partial differential equation L(v) =-E. The
assembly of all the expressions for all nodal points can
then be expressed in a matrix form and can be solved by

many existing numerical techniques such as the Gauss-Seidal

iterative method or ADI (Alternative Direction Implicit)

method.
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There is an essential difference between the finite
analytic (FA) method just described and the finite dif-
ference (FD) or the finite element (FE) methods. In
finite difference (FD) methods the relationship between
¥p and its neighboring points ¥n is nct obtained from the
analytic solution of the differential equation, but
instead, from the difference formula truncated from the
Taylor series expansion of the dependent variable about its
neighboring points. On the other hand, the FE method
assumes an approximate functional form (shape function),
normally some polynomials of a lower degree, say up to
the 6th degree, to represent the solution in the whole
local element. It uses the variational or the Galerkin
type or weighted residual type of integration on the dif-
ferential equation over the local element to find the re-
lation between y, and its neighboring points y,.

The finite analytic solution given in Eq. (ITI-3) on
the contrary is obtained from the local analytic solution
of the differential equation L(y) =-f without tempering
the derivatives of the governing equation. For the
Laplace and Poisson equation the only approximation made
is on the boundary conditions of the subregions. The
accuracy of the finite analytic (FA) solution may be im-
proved by considering more boundary nodal points in the
local subregion. For example, the use of five nodal points

on each side of the boundary as shown by the dashed line
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in Figure (I1I-2), will lead to a more accurate 17-point
finite analytic solution.

It should also be noticed here that the finite analy-
tic soiution, since it is analytic, is differentiable.
Therefore, the derivative of the solution y Bqs. (III-3),
which repre¢sents important physical variables such as
heat flux from the temperature distribution or velocity
and stress from the potential or stream functiorn, can be
readily obtained without the difficulty,or the numerical
differentiability is one of the advantages of the finite
analytic method. The finite analytic solution for the

derivatives may be written as:

(4,0 = Cxec YEc * Cxwc Ywe * Cxnv Yne * Cxsc ¥sc

+ Cong YNE * Cxnw YNw ¥ CxsE YSE * Cxsw Vsw

+ CxGP (I11-6)

and

C c

(vy); = Cypc YEc * Cywe Ywe * CyNe ¥nc T Pysc Ysc
+ Cong NE * Cynw Yaw * Cyse ¥se * Cysw Vsw

+ CyGP (III-7)
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where Cx's or Cy's are respectively the finite analytic

coefficients multiplying the corresponding neighbor nodal

values.
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CHAPTER 1V

THE FINITE ANALYTIC FORMULA FOR
THE POISSON EQUATION

In this Chapter the FA method is applied to the Pois-
son equation as an example of an elliptic partial differ-
ential equation. The Poisson equation, which includes the
Laplace equation, appears in many physical as well as en-
gineering problems, such as steady state heazc conduction
with heat generation or source and sink flows and in fluid
dynamics. Several basic FA solutions for the subregion with
different local boundary conditions are presented in this
chapter. The finite analytic solution for a special prob-
lem will be given in the subsequent chapters.

Let us consider an example of a Poisson problem with
the boundary condition shown in Figure (IV-1) where the
lower left corner is insulated while the outer boundary
may be specified with the boundary conditions of Dirichlet
(dependent variable), Neumann (derivative) or Churchile
(mixed) type. On the other hand, for an interior sub-
region each boundary condition of the subregion is ex-
pressed by three dependent nodal values. The finite
analytic solutions then are different if the boundary

conditions are different. Therefore, in the following
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section we shall consider the FA solutions for different

types of boundary conditions that are present in Figure

(Iv-1).

PP PRS §
Py

IV.1 The FA Solution for General
Internal (GI) Subregion

B P PO T <

Let us consider now the finite analytic solution for
the two-dimensional Poisson equation in the rectangular
subregion, shown in Figure (IV-2). This problem represents ;
a typical problem for the internal subregion where only
dependent variables are used to specify the boundary con-

dition. The governing equation is
bex ¥ wyy = - & (Iv-1)

where £ in general can be a function of x and y, but in
deriving the FA solution, £ will be approximated as a con-

stant in the local subregion. The boundary conditions for

this subregion are

e
[

o

<
L]

£ (¥),

x = 2h v = £:0(y),
(IV-2)
y =0 v = f5(x),

~
"
N
x*
<
"

£y (x),
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Figure (IV-2). Typical General Internal Subregion
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where fw, fE’ fS’ and fN are west, east, south, and north
boundary functions of the subregion. In order to derive
a 9-point finite amnalytic formula, the boundary conditions
can be approximately represented by quadratic polynomials
in terms of the boundary nodal values at boundary points.
For example;

2
fN(x) = a; + a;x + a,x-,

where
ao = wwa
3 2 -3 (IV-3a)

a; * - F ¥w * R Yne T 7R UNE?

1
¥ rt— ¥
NC 2h NE

= =

1
a, = 1]
2 th NW

Similarly, it can be done for the other three boundary

functions fs(x), fw(y), and fE(y).
fo(x) = by + box + b,x’
S 0 1 2

where
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. by = Vgy»
3 2 1
by = - R V¥sw *E& ¥Ysc " 7h Vs
1 1 1
b, = Vow - 7 Vsc t v
2 ;;7 SW ;7 SC ;;7 NE

2
fy(y) = Cy + Cyy + Cyy

where
Co = Vgu»
3 2 1
C1 " " % ¥sw * X Ywc ~ 7% “nw’

1 1 1
Co = =3 ¥y -~ =7 ¥Ywc * =7 Ynw

and

2
fe(y) = dy + dyy +d,y

where

do = ¥gg»

3
d) = -k ¥seE * % YEC ~ IX YaE°

(1v-3b)

(IV-3c)

(IV-3d)

25
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Here h and k are the grid size in the x and y directions.
The local analytic solution yof the Poisson equation may
be obtained by the superposition of the following two

problems.

Problem (1): Homogeneous equation with nonhomogeneous

boundary conditions

vy = 0 (1IV-4)
vy = fgO) x = Zh
vy = £y () x =0
vy = fy(x) y = 2k
by = fs(x) y =0

Problem (2): Nonhomogeneous equation with homogeneous

boundary conditions

q’NH = - 6 (IV‘S)
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| Uy = O x = 2h
Yng = O X =0
2V G y = 2Kk
= ( -
Y\H y =0

IV.1.1 The Solution to Problem (1)
Since the Poisson equation is linear, the solution to
the subregion can be superposed by four simpler solutions,

orT

Yy * V1 * Vou * V3y S (1V-6)

where,

+

(wIH)xx (wlﬂ)yy =

+

(wZH)xx (¢2H)Yy =

+

(W3H)xx (W3H)Yy =

Cawdxx * Canlyy = (IV-7)
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with the corresponding boundary conditions

=0, Vog = Ew(Y)s vay

The problem for Yy Mmay be solved by the method of

separation of variables.

(R xx * (dyy

with boundary conditions

Y1H
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The analytic solution for this problem is
11 = nk1Epn SinCAY) Sinh(A_x) (IV-10)
where,
A, * %% and the coefficient Eln is determined as
2 .
Jo¥ £5(n) sin(a_y)dy
Eln ~ (Iv-11)

X .7 ;
IO sin® (A y) sinh(2x h)dy

By substituting fE(y) from the equation (IV-3d) into
equation (IV-11) and integrating the equation (IV-11), E
is expressed in terms of boundary nodal values VsE* YEC?
and YNE Evaluation of V1 3t point P gives

“1w)p = CisE YsE * CiEc Yec * Cine NE (Iv-12)

where

® 1 2 . sinh(b
Cise " nd1 & - gx) sin (b) s1nﬁ§2§y)
. 2 4 . sinh (by
Clec * né1 3 sin(®) siﬁﬁéQBY)
1 2 . sinh(b
Cing = nfl (5 - 33) sin(b) 51n552§7)

b = ;ﬂ, y = h/k.

29
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Similarly, the solution of Yape Yaye and Y4y €an be ob-
tained. The solution to problem (1) is then the sum of

these solutions, or

Vg =Ygt Y2 Y V3n T VeH

IV.1.2 The Solution to Problem (2)

To solve the problem with the inhomogeneous term onée
may use the separation of variables method, first to the
homogeneous equation with the two X boundary conditions
equation (IV-5) to obtain the eigen values. Then, the
solution to the problem (2) reduces in finding the function
Dn(y) in the series solution assumed for equation (IV-5) as

«®

by (X5¥) = nil D (y) sin(u;x) (IV-13)
where y_ = L. ho=1,2
n fﬁ’ sbge e
The unknown function Dn(y) in equation (IV-13) is governed
by Eq. (IV-14) which is obtained when Eq. (IV-13) is sub-

stituted into the equation (IV-5).

zl [Dn(y) -u’n Dn(Y)] sin(unx) = - (IV-14)
n.

The constant £ can be expanded in terms of Fourier sine
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series with the eigen function given in Eq.

o

g = nil wn(y) sin (unx)

where Wn(y) can be found as

. 1 B .
W, () =g [ & sin(ux)dx

wn(y) = - % cos (2b)

where b = E%.

Then the Fourier series expansion for £ is

[

= 1 .
E = nil [- 5 cos(2b)] 51n(unx)

(IV-13) or

(IV-15)

(IV-16)

(IV-17)

Substituting equation (IV-17) for ¢ into equation (IV-14)

leads to a second order ordinary differential equation for

Dn(y). The second order differential equation for Dn(y)

with its two zero boundary conditions is

DI (y) “2n Dp(y) = - W (y)
D (y) =0 y =0
Dn(y) = ( y 2K

(IV-18)
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which has the solution

. p 2h’¢ [(- 1 . 1
141 STRR (2577 * Tanh (25777 )

(1v-19)
sinh(uny) - cosh(uny) + 1] cos(2b) sin(unx)

At point p where x = h, y = k, the solution becomes

hd 2
(wNH)p = I zh'——-smr b) sinrn(b/y) [—EEHT757~T

n=1 b?

1 1 1
SInR(Z677) * SInh(b/y; ~ Tanh(b/v)- (IV-20)

where b = nli/2, n = 1,2,...

IV.1.3 The 9-Point FA Formula for the
Internal Subregion

The local analytic solution to the subregion shown in
Figure (IV-2) is the sum of the homogeneous and nonhomo-

geneous solutions just obtained in the above section. That
is,

0 -]

p(x,y) = Eln sin(xny) sinh(xnx) + t© E

sin(xny)
n=1 n=]1

2n

[sinh(an) - tanh(zxnh) cosh(knx)] + nil BSn
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sin(unx) sinh(uny) + 21 E4n sin(unx) [sinh(uny)
n.

. 2h2g 1
-tan(2u k) cosh(u y)] + 21 s [(‘sinh(Zb/Y) *
n.

tanhlczwﬂ) sinh(u,y)-cosh(u y) + 1] cos(2b)

sin(unx) (1V-21)

where E1n is equation (IV-12) and

E2n

E3n

Edn

nil nfl
s P ) SRR ) 3

2k
f £, sin0_y)dy
K tanh(ZAnh)

2h

[o fN(x) sin(unx)dx

h sinh(Zunk)

2h

) Io £ (x) sin(u x)dx (IV-22)

h tanh(Zunk)

ni

Substituting the approximate quadratic expressions for

the boundary function f's equations (IV-3) into the equa-

tion (IV-21) and evaluating it at P,gives the 9-

point FA formula as follows:
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+ + C

Cyc *wc * Cnc ¥nc * Csc Ysc *

(Iv-23)

Cxe ¥ne * Cse Yse * Cnw Unw * Csw Ysw * Cop

where

_ 4 . sinh (by
Cge = il " sin(b) ETEF%?E%)

Cwc = nil %; sin(b) %%%%%%%%)

Cne T nzl g; sin(b) ziﬁh b/ )

Cse = ngl ﬁ; sin(b) iiﬁh b/ )

CNE T nzl (% - %;) sin(b) [3%%%{§%%7 . %%%%%%é}%)]

1 2 . sinh(bY sinh(b/

G * T, G ) sin®) 2inh(bn) . sianiiird )
1 2 . sinh%bg! sinh%b/¥2

CSE = T (S - 'b—;) Sln(b) [Sln Y) + sin Y)]

- 1 .2 4 . sinh%bﬁz sinh(b/
Cow I (g 3) sin(b) [5qm Yy * 51n51255yi]
n=1 b
> 2h? : . 1
Cep = I -?5 sin(b) sinh(b/y) [ig5 -y -
n=1 b
1

AU S S
SInh(26/y) sinh(b/y) tanh(b/v)
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For the Laplace equation since ¢ = 0, CGP = 0,
The coefficient C's in the above equations need to be
evaluated once if the grid size is given. In particular,
when the grid sizes in x and y directions are the same,
that is vy = 1, the 9-point FA formula for the interior
point P, wp, in the interior subregion can be evaluated
once. The numerical values of these coefficients are
listed in Table (IV-1). Here the numbers given in Table
(IV-1) are corresponding values at any given node. For
C

example, 0.205315 is the FA coefficient C C

NC’ “SC’® “ES’
and CWC' It should be mentioned that the eight coefficients
for the neighboring nodal values denoted by wn(i.e. n = EC,
WC, etc.) and the constant multiplying £¢h? are universal for
all subregions and also independent of grid size. However,
the accuracy of the formula is restricted by the accuracy
of the approximation made for the boundary condition in
equation (IV-3) which has an accuracy of 0(h?) or 0(k?).

As it was already mentioned that the FA method also
gives the solutions to the derivatives %% and %%. This
is a definite advantage for the method as the analytic solu-
tion in any subregion is differentiable. Therefore, by dif-
ferentiating of the equation (IV-21), a corresponding 9-
point FA formula for the derivative of a node point inside

the rectangular subregion can be derived. For example,the

differentiation of equation (IV-21) with respect to x and




QT 3’-"'*: ' 16
oF el
. - v -~ LA \-',‘.“ \
| e
§ as
NW NC NE
0.044685 0.205315 0.044685
WwWC p EC
o = | 0.208315 0.205315 | x v *
_ P
SW SC SE £h2(0.29493)
0.044685 0.20531S 0.044685 .

Table (IV-1). FA Numerical Values for Coefficients
in a General Internal Subregion.
(The 9-point FA Formula for General
Subregions)
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evaluated at the east-center point along the east boundary,

gives the expression for the derivatives at the east

central (EC) node of the rectangle, or %%lﬁc as
y, 1 .
=lec = | [Cxec YEc * Cxwe Ywe * Cxnc ¥nc * Cxsc VYsc
* ConE YNE * Cxse YsE * Cxaw Ynw * Cxsw Vsw!
+ Cog (IV-24)
where
¥ 4 sin(b
CxEC nil b2 tanéi%Eyi
2 4 sin(b
Cowc = I 4 Eant ey
xWC n=1 b2 tan Y

C. .= f i_y sin!bg

xNC n=l b2 tan Y
- 4 sin%bg

CXSC nil sz tan Y

= - 2—. 1 1 1
CxNE nfl(l bz)Y sin(b) [tanEiZBYS * tanﬁiZE?yil

> 2 . 1 1
Cesg = B (1 - )y sin(®) lgmprrey) * Tanh (26777
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1 - 2 . 1 1
R Ca = L, (- )y sin(®) legmrzeyy £arh (25777

2 . 1 1
Cosw = E. (- ;;)Y sin(b) lezrR(zey * Tan (/7))

2h

> 2he 1 ) 1 . 1 ) '
n=1 b? tanh (2b/y) sinh(2b/y) sinh(b/y) }

(@]
[

EEEHT%77T] sinh(b/v) ;

For vy = 1 the 9-point FA formula of Poisson equation for
the derivative %% evaluated at the east-center node is
written in Table (IV-2). Again, the numerical values in
the Table (IV-2) are universal and independent of grid

size.

IV.2 The FA Solution for a Subregion ]
with One Side Insulated

The need for deriving the local finite analytic solu- %
tion for different boundary conditions other than the one 4

just considered in the previous section arises when the sub-

region has a boundary of the original problem. As shown in
Figure (IV-1) different boundary conditions such as deriva- |
tive of temperature or symmetry may be presented. In this
case the finite analytic solution for the subregion is dif-

ferent from the previous one given in section IV-1. In this !

section the Poisson equation Eq. (IV-1) in the subregion
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ARIA = a1y
OF bioL L TY
NW NC NE
-0.017485 | -0.324686 | -0.333144
— WC EC
3y .1
5x/EC™ K | -0.140345 1.490972 | xy_ +
) SW SC SE he (0.950832)
L 0.017485 | -0.324686 | -0.333144

Table (IV-2). The 9-Point FA Formula of the Poisson
Equation for the Derivative 3y/3x
Evaluated at the Midpoint (EC) of the
Boundary Side.
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SA with insulated boundary as shown in Figure (IV-3) is

solved. The boundary conditions for this subregion are:

=2 ﬂ'
y=0 =0

y =2k oy o= £y (x)

x =0 vo= £,0)

< = 2h Y = fE(y) (IV-25)
Again, since the Poisson equatidn is linear the solution to
the problem, y, for subregion SA, may be obtained by super-

position of the following solutions YN and YNH tO the two

simpler problems.

Problem (1): Homogeneous equation with nonhomogeneous

boundary conditions

92 W o= 0
vy = g () x = 2h

(IV-26)
vy = () x =0

vy = fy(x) y = 2k
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£E(y)
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- > 7 7 77 777
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Figure (IV-3),.

3—*’0
Y

SE

Subregion SA (South Adiabatic)
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59 /3y = 0 y =0 (IV-26)

The homogeneous equation with nonhomogeneous boundary
conditions can be divided to three simpler problems, each
having three homogeneous and one non-zero boundary conditions

as,

YH V1w * Yo * V3

where

Py =0

g = Xy = 2K

ale/ay =0 y =0

Vig = 0 x = 2h

by = 0 x =0 (IV-27a)
v’wzﬁ = 0

Vo ™ 0 y = 2k

(IV-27b)
3"’ZH/ay = y =0




wZH = 0 x = 2h
(IV-27b)
Yo = fy(¥) x =0
VzwsH = (0
Yoy = Ey(X) ¥y = 2k
3pzy/3y =0 y =0
(IV-27¢)
¢3H = 0 x = 2h
¢3H =0 x =0

The solution to vy,,, ¥ and vy can be carried out by the
1H 2H 3H

method of separation of variables and added together to give

the solution to problem (1). The solution to the equation

(IV-27a) has the form

Y1H

where An

L
n=

nil
Zh

. Dn sin(Anx) cosh(xny) (IV-28)

is the eigen values and n = 1,2,3....

The coefficient Dn is determined as

Zh

]o fN(x) sin(knx)dx

I

Zh

o]

il
sin (Anx) cosh(ank)dx



Substituting fN(x) from equation (IV-3a) into equation

(IV-28) and evaluating Y1H at point p gives,

(ipdp = Crow Yaw * Canc Ync * CINE UNE (1v-29) |
where
1

ot 1 2 . cosh(b/y ]
Carg = S -——3{2571 :
INW nﬁl ( bg) sin(b) cos Y)

> 4 . cosh(b/
Conpn = L2
e = LG sin(b) 53 Y)

IS S SN cosh(b/y

C1NE nil % bg) sin(®) 755 Y)

Similarly, the solution to (q;ZH)p

by rotating the coordinates accordingly. Then

() =

Problem (2):

e e . .
A .
0:»\--»- : ot
PRUER T

and (\pm)p can be obtained

Nonhomogeneous equation with homogeneous

boundary conditions

L S

VZWNH = - £

(IV-31)

wNH = 0 x = 2h
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¥wg = 0 X =0

vy = 0 y = 2k (IV-31)
3YNp/3y = 0 y =0

As it was done in section IV.1.2 for equation (IV-5)
the problem (IV-31) may be solved.

Evaluating the Yy 3t
point p one has

- ; 2h% _ cosh(b/y . )

where b = ;2 and y = h/k.

The 9-point finite analytic (FA) formula for the sub-

region SA, is found by superposing the solution ¢ and

YNH given equations (IV-30) and (Iiv-32).

Yp = Uy + Gnwdp

or

Csc ¥sc * Cnp ¥ng

NW ¥Nw * Cgp Ygp * Cgy wgy + Cop (IV-33)
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where

EC

Cue

NC

SC

NE

(@]

SE
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. . 8 .16 ne sinh(ay/2
15+ 2 singa)) cos ) S

S (.8 .16 . s1nh(ay/2)
nil [ ~ + X 51n(a)][cosh(71) Tanh(ay)
cos(%)
T 4 cosh (b/y
n=1 g; sin(b) cosh(2b/y)
0
z

sinh(ay/2
: [;; + & - ;-) sin(a)] g%55§3$7—l

1 2., ... cosh(b/
cos(a/z) + I (g - 5) siu(®) RTC17es

z [__+(_ _ __) sin(a)] [cosh(ay/2) - iiﬁg%:ﬁ{Z)]
n=1 52 al

® A cosh(b/
cos (a/2) + nil (B —~) sin(b) EE?H%TF}%)

n

@

L .8 . sinh(ay/2
n=1 [;; = sin(a)] s;nh%:z) ) cos (a/2)




ORjrra;

Y ol
i : a7
. » 6 8 . , sinh(ay/2
Cow = I % - & sin@a))(coshqay/2) - t—j;{-lf_l]
SW n=l a° al anh(ay

cos (a/2)
- . . 2h? . cosh(b :
fop = I pr L SRR sine,

a » L2n-1 H, b = Qﬂ , Y = g, and n = 1,2, ...

For a given ratio of grid size say y = 1, the coefficient
C's in the above oquations can be evaluated.

The 9-point FA formula for the subregion of the type
SA is in Table (1V-3) where the numerical values for the
coefficients are again universal and indepsndent of the
grid size. The hash marks drawn at the bottom of the

Table denote the south boundary's insulation or %% = 0.

[V.3 The FA Solution for a Subrcgion
with Two Insulated Sitdes

Consider the subregion SWA, shown in Figure (IV-4)
where the south and west boundaries are insulated or have

Zoero derivatives. The governing equation and boundary con-

ditions are
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NW

0.042678

NC

0.223055

NE

0.042678

WC

0.271649

P

EC

0.271649

SW
0.741445

EC
0.741445

Table (IV-3).

VAV AN AV ey

/S /77

X +
wl’l

£h?(0.338716)

FA Numerical Values for Coefficients

in a Subregion with One Insulate _

Boundary.

for Subregion SA)

(The 9-Point FA Formula




AUTEE RN EIN T RO

\

NN NN N N NN

e

NONCON N NN N NS

EC
EC

Figure (IV-4). Subregion SWA




e )
i e
? y =0 %% -0
J
y = 2k v = fN(X)
x = 0 %% -0
x = 2h v o= fE(y) Tvse)

The solution to equation (IV-34) can be similarly solved
by the method of separation of variables. Thus, the finite

analytic solution for subregion SWA evaluated at point P

gives

Yo ™ Cec YEC * Cwe Ywe * Onc YNe t Usc Ysc t ONE YNE

+ C

st Vs * Csw vsw * Cgp  (1V-35)

where

cos (a/2)
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Cye ™ n;::l [- -:—2 . :11-‘:- sin(a)] %&%‘}l cos (a/2)
Ce = O
G+ 5 G ) s 1SR
%%%%%%é%}l ] cos(a/2)
Cuy = ngl [% i %5 sin(a)] S25p88/24) cos(a/2)
Cop = ngl [~:—2 . -:—3- sin(a)] ggzgg:)’z) cos a/2
Coy = O
Cop ® n§1 %2;5- sin(a) [1 - SO5h 3/3 1 cos(a/2)

a = Lgﬂillﬂ, n=1,2,....

Again in the case y = 1, the coefficients C's are
universal constants. Once these coefficients are calcu-
lated, they can be saved and used repeatedly. The numeri-
cal values of these coefficients are listed in Table (IV-4).

Presented above are some sample FA solutions for the
Poisson equation. Further FA solutions can be solved for

more complex boundary conditions as the need arises.
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OF [ SIS

/ NW NC NE
j 0.112834 0.366502 0.0413275
wWC P EC

/
/ 0.0 0.366502 xy_ +
/ n
g SW SC SE th2(0.724753)
A 0.0 0.0 0.112834
/

7777 77T T

Table (IV-4).

FA Numerical Values for
Coefficients in a Subregion
with Two Insulated Boundaries.
(The 9-Point FA Formula for
Subregion SWA)
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CHAPTER V

TWO DIMENSIONAL HEAT CONDUCTION WITH
CONSTANT HEAT GENERATION

In order to illustrate and examine the accuracy of
the finite analytic (FA) method, a problem having an ex-
act solution is solved with the FA method. The finite
analytic solution is then compared with the exact solu-
tion and the corresponding finite difference and finite
" element solutions. In this section, the problem of a two
dimensional heat conduction in a square region (LxL) with
uniform heat generation,as described in Figure (V-1),is
chosen. The western and southern sides are insulated
while the other two sides are kept at a constant tempera-
ture TL. The governing equation and boundary conditions

of the problem are

K(TxX + TYY) + g ~ 0 (V-l)
T

X 0) Yy > 0, a_x- - 0

x =L, y > 0, T = T,

53
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YIL, X>0, T'TL (v-z)
1
ﬁ where, g is the heat generation, k the thermal conductivity,

and L the size of square.

The problem may be normalized as
Ve * Yy 7 1 (v-3)

with dimensionless variables defined as

T-T
¥ oL , X T and y {.
The corresponding boundary conditions in dimension-

less forms are

!
H
1
‘




55

ORICv v 7:\7 1 13
OF PCCR QUALITY

<

L T(x,L) = T

NN

J+1
WA Gl

T(L,y)= TL
J-1

NONCN NN

N

‘A |swa SA

N N a7 G 7 S &V S & G v & G G (v AV AV A "R
I=1 2 is1 i i+l I

Figure (V-1). Nodal-Point Arrangement for Two
Dimensional Steady Heat Conduc-
tion in a Square Region with
Uniform Heat Generation.
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v.1 Finite Analytic Solution of the Problem

The first step in the FA solution to the problem is
to subdivide the region into a finite number of subregions
by setting up a system of nodes as shown in Figure (V-1).
As shown in Figure (V-1),the subdivided problem involves
three distinct types of subregions named General Interior
(GI), SouthWest-Adiabatic (SWA), and South-Adiabatic (SA)
or West-Adiabatic (WA). The boundary conditions for these
three distinct types of subregions as shown in Figures

(Iv-2), (Iv-3), and (IV-4) are following.

Type (GI),
}'=0 ‘b=fs(x)’
y =2k oy = £)(x),
x =0 v o= £,00),
x = 2h p = fE(y). V-5)
Type (SWA),
9
y=0 3_$.=0’
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ORIGN™. v -
x = 2h y = fE(}’). OF PG Clnbily (V-6)
Type (SA)
]
y = 0 % =
y = 2k p = fN(x)
Xx=10 b= £ ()
X = 2h b = fE(y) W-7)

where the local boundary condition f's have already been

described in Chapter IV,

V.1.1 The Formulation of the FA
Method for wp

The basic principle of the FA method and the 9-point
FA formulas for the Poicson equation in three types of sub-
regions GI, SA, and SWA Tables (IV-1), (IV-3) and (Iv-4)
were already presented and derived in the previous chapter.
However, if the temperature along the insulated boundaries
desired, the local analytic solution derived in the previous
Chapter can be easily evaluated at these nodes. This is

given in the following section.



-‘Wﬁ,?llﬂ,ﬁ
ORIG!M e

oF POOR Gitmt 58

- V.1.2 The 8-point FA Formulas for the
Nodal Values along the Adiabatic Boundaries

Consider the Figures (V-1), (IV-2), (IV-3) and (IV-4).
There are three distinct boundary nodes as SC in subregion
(SA), SC and SW in subregion (SWA). The 8-point FA for-
mulas for the nodes along the insulated boundaries can
be obtained from the analytic solution in each subregion
evaluated at the boundary nodes.

The 8-point FA formula for the boundary node SC in

subregion (SA) is

Ysc = Sc YEc * Cwe Ywe t One Yne t CONE YNE t Csw Ysw

* Cgsg ¥se * Canw vaw * Cop (V-8)
where
® 8 16 . sinh(ay/2
Cec nil [ a2 ¥ 2t sin(a)] 5y ay) °
’ C = I 8 16 _. a _ sinh(ay/2
we T o[- I sin(a)][cosh(z1) - o ay) 1

® 4 sin(b
C - z — .——ﬁh’
NC n=1 b? €OS Y

- 2 2 _ 8 . sinh(ay/2
c nil [az * 5 aa) sin(a)] g;;ﬁfgfy—l +

NE

1 2 sin(b
nil (5 - gj) coséi%77)’
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) Coy = nil [;; gy sin(a)][cosh(FL) - i:g%§:§1211’
. (& sinh(ay/2
CSE " pa JrR sin(a)] ?ﬁﬁ{%rl
= : = 2 .2 _ sinh(ay/2
Caw nil [==12 + (3 a) sm(a)][cosh( X é—ﬁ%rl]
® 1 2, sin(b
* nil (S ;) COoSs Y ’
C = ; sz ] sin(b).
GP j=1 b® __—51757_7

Again, for y= 1 the universal 8-point FA formula for sub-
region (SA) can be obtained. The numerical values of
these coefficients are 1isted in Table (v-1).

The 8-point formula for boundary node SC in sub-

region (SWA) is equation (V-8) where

Cec = nil [ - i—; + la% sin(a)] %%%)/_Z).

Cye = 9>

CNC-ngl['-z—z+;%sm( a)] %g%l{%@l

‘ CNe © nil[—a: + (— - ——) sm(a)][zgzgg‘%zl . 222%“421)1,
Cow = 0
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IO R N cosh(ay/2)
Cg = I Lo o sin(a)] Soshtayy
I S - coséa/ZL
CNW nil [az al sin(a)] cosh(a/y)’
c = 1 B sinca) [1 - 1 __1 cos(a/2)
GP n=1 a? cosh(a/~v) *

The numerical values of these coefficients for y = 1 are
presented in Table (Vv-2).
The 8-point FA formula for node SW in subregion (SWA)

is

vsc = Cpc YEc * Gwe Ywe * One Ync 7 Csc ¥sc * CNE YNE

+ C (V-9)

+ Cgg ¥sg * Cnw Yaw * “op

where

e = 1t (-8 + 18 sina)]/cosh(ay),

EC a1 a? al

CWC = 0
s 8 16 .-
C = 3 [-—+ = sin(a)]/cosh(a/y),
NC n’l az as
C = (

SC
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OR\CNP""_ I ~

~ ‘\J l‘.‘\'

oF Ot
NW NC NE
-0.001627 | 0.089025 -0.001627
We EC
0.283945 0.283945
Vap = Xy +
SC SW SE n
h?(0.455731)
0.173170 0.173170

77 /77 /7777777 7 /7 777

Table (V-1). FA Numerical Values for Coefficients
in a Subregion with One Insulated
Boundary for the Point on the Insulated
Boundary.
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Nw NC NE

0.099149 0.256229 -0.000786
WC EC

L.0 0.416351 Xpnt
SW SE k2(0.917533)

0.0 0.229957
7777777/ 777/ /777

Table (V-2). FA Numerical Values for Coefficients
in a Subregion with Two Insulated
Boundaries for the Point on the Insulated
Boundary.
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.52 . ata 1

CNE = nil [;Z * (“ “—) 51n(a)][cosh(ay) cosh(a/yI]’
Csg = 1. 1% - & sin(a))/cosh(ay),

n=1 a? a°
Cay = T o - & sin(a)l/cosh(a/y),

n=1 a? a?

- 8h . 1
Cop 7 I ov @ - wmRra )

The numerical values of these coefficients for vy = 1, are

listed in Table (V-3). It should be mentioned that for the

nodes on the west boundary side in subregion WA, the FA
formulas are obtained by rotating the coordinates of the

south side.

V.2 Numerical Solution of the Problem

Let us now apply the finite analytic formula to the
example with equation (V-3) and (V-4). Consider the FA
solution with uniform grid size h = k as shown in Figure
(V-1). The grid spacing h, for n number of grids is
equal to %, with the origin (0,0) (which corresponds to
i=1, J=1) at the south west corner and a grid size h as

shown in Figure (V-1), the numbering on the y-coordinate

will be J = 1,2,3...J, and on the x-coordinate i=1,2,3...I

respectively. The purpose of the FA method is to find a

numerical solution ¢ at points J = 1,2,...J and i=1,2,

from equations (V-3) and (V-4).




NW

0.157798

NC

0.343775

NE

0.006854

WC

0.0

EC

0.343775

NONCN NN NN NN

SE

0.152798

Table (V-3).

/S 7SS

X +
wn

h?(1.178614)

FA Numerical Values for Coefficients
in a Subregion with Two Insulated
Boundaries for the Point on the Corner

(sw).
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The finite analytic scheme results with a set of
simultaneous, linear, algebraic equations to solve. Thus,
there are n«n unknown nodal temperature values to be solved.
The nxn FA algebraic equations can be constructed from the
9-point and 8-point FA formulas (Tables IvVv-1, IV-3, 1IV-4,
and V-1 to V-3). The FA equations can be cast in the

following forms.

For any general internal subregion, (i>2, J>2)

m+l

m
Vi, g

m m n
= (205315 (b5 549 * Vis1,g * ¥i,ge1 * ¥ie1,0)

m m n
+ 084685 (¥i,y gup * Vie1,9-1 * Yi-1,J-1

m
Y Vio1,041

) + h? (0.29493) (V-10)
for the nodes along the y = 0, (i=1,J>2)

m+l _ m m m
wl,J . 283945 (wZ,J+1 + WZ,J-I) + .173170 (wl,J+1

m m
P ¥1,ge1) 7 -001627 (g 5 ¥y 5g) ¢

.089025 w? J * h?(0.455731) (V-11)
»

In the similar fashion the equation along x = 0, (i>2,

J=1)
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m+1 m m m
wi,l = 283945 (wi-l,Z + ¢i+1,2) + .173170 (¢i+1,1 +

m m m
¥i-1,1) © -001627 (yj ; 5 * ¥i,p 3) + -089025

w? 5 + h2(0.455731) (V-12)
’

At point (x,y) = (0,0) the equation is given

Vi1 = 152798 (6] 5+ 4T ) ¢ 343775 G o+ 4l )

e Y

+ .006854 ¢§ 3 + h2(1.178614) (V-13)
?

At point (x,y) = (2,2) the equation is

w?f% = (112834 (4] 5 * ¥§ ;) + .366502 (45 5 ¢+ W5 )

+ .041327 w? 3 + h2(0.724753) (V-14)
’

For the points (i=2,J>2) and (i>2,J=2), the equations are

respectively

m+1 - m m m
¢2,J .271649 (wZ,J*l + WZ,J-I) + 0.074144 (wl,J+1 +

m m m 4
Vi, g-1) * -042678 (¥3 ;.9 * vz 59) ¢ |

.223055 wg 5 + h?(0.388716) (V-15)

] -
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m+l _ m m m
¢i,2 .271649 (wi+1,2 + ¢i-1,2) + .074144 (¢i+1,1 +
m m m
Vio1,1) * -042678 (vi, s v ¥ q,3) ¢
m
+ ,223055 wi z * h2 (0.388716) (V-16)
Finally, for the points (i=1,J=2) and (i=2,J=1) the
formulas are
m - m m . m
¢1,2 = ,229057 wl,S + .416351 w2’3 .000786 ws,s
m m
+ .256229 w3,2 + .099149 W3,1 +
h?(0.917533) (V-17)
m m m m
wz,l = ,229057 03’1 + .416351 WS,Z - .000786 wS,S +
m m
.256229 W2’3 + .099149 wl,s +
h?(0.917533) (V-18)

In this particular example the temperature at each node on
the north and east boundaries is known, making it unneces-

sary to write special equations at the two boundaries.

Equations (V-10) to (V-18) represent the system of algebraic
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equations that must be solved for the unknown nodal temp-
eratures.
An iterative numerical procedure can be used to solve

the system of linear equations within some tolerance e.

V.2.1 The Iterative Method of Solution

The application of the finite analytic method to the
problem has now resulted in a set of simultaneous, linear,
algebraic equations. As an illustration, let us consider
the grid size h to be equal to 1/4. This nodal point ar-
rangement is shown in Fig. (V-2). Observe that the nodal
points (1,5),....,(5,1) along the north and east boundaries
are all at zero temperature as given by the boundary con-
ditions of the problem. Thus, there are only sixteen un-
known temperatures. The Gauss-Siedel method is applied to
solve this system of equations. The computational procedure
begins with initial guesses w§0) for all the unknowns. An

1,)
(1

improved value for each of the unknowns vy } is then com-

’

puted from Eqs. (V-10) to (V-18). This iterative process
can be carried out until it converges. That is the dif-

ference between two iteratations within a required accuracy

m+1 m

or c s Y. s

5,5 7 ¥i,j

criterion. For example in this problem, v1.1 Tequires
]

| < ¢ , where the value of € sets the error

thirty-nine it¢rations to converge into four significant

figures.
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Figure (V-2). The kegion with the
Corresponding Boundary
Conditions where the
Equation is Solved for
Comparison of Different
Numerical Methods.
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A method to accelerate the convergence of the itera-
tion process is the method of successive overrelaxation
(SOR). In this technique the update value wm+1 at a given

i,j
node is replaced by the following equation. ’

m+1 m )

r w(y - ¥

v i,j ~ Yi,j

(V-19)

m+l _ m
i

ii = Yi,j

m+l
where ¢; ; is the value just calculated. The relaxation
’

factor w may be thought of as a weighting factor. For

w = 1 the new value of ¥ would be the same as calculated

in the Gauss-Siedel procedures. The method is underrelaxed
if o <w <1 and is overrelaxed if w > 1. In this
particular example, an overrelaxation value of w = 1.4

is used and the solution at wl,l converges into four sig-
nificant figures after fourteen iterations instead of

the thirty-nine iterations required for the Gauss-Siedel

method.

V.2.2 Numerical Results
We will now show the numerical solutions of the same
problem using finer grid size with h = 1/4 as shown in
Figure (V-2).
In order to discuss the finite analytic (FA) solution,
the problem given in this chapter is also solved by finite

difference (FD) and finite element (FE) methods which are

given by Mayer [17]. The numerical solution of the problem
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and errors using FA, FD, and FE numerical methods are listed
in Tables (V-4) to (Vv-6). In all three tables the first
column is the location of the node as shown in Figure (V-2).
The second column is the exact solution of the problem,

the third column shows the numerical solution, and the
fourth column states the error of the method. The finite
difference solution given by Mayer [17] is based on 5-point
central difference.

The finite element solution given in Table (V-6) 1is
based on variational formulation of the differential equa-
tion. In this two dimensional conduction problem a three
nodal-right triangular finite element is used. It is as-
sumed that the temperature varies linearly between the
three corner temperatures. To compare the finite analytic
method with the finite element method it will be instruc-
tive to look at the finite element equations for a nodal
spacing of 1/4.

From the tables it 1is observed that the finite analy-
tic solution gives more accurate solution than the other
methods. For example, at the node (2,3) the error of FA
solution is accurate to 10-S while the finite difference
and the finite element solutions have errors of 0.0027
and 0.0006 respectively. At node (1,1) the error for FA
solution is -0.0001 while the error for the finite dif-
ference and finite element solutions are 0.0036 and

-0.0066 respectively. It should be remarked that the
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finite analytic solution does not have the truncation error
as in the finite difference approximation. The only approx-
imation made in the finite analytic solution is that the
boundary functions fB(y), fs(x), fN(x), and fw(y) are ap-
proximated with a second degree polynomial. An improved
FA solution may be obtained if each subregion is made tc
have five nodes on the boundary shown on dashed lines in
Figure (III-2). 1In this case the boundary functions fB’
fS’ fN’ and fw are approximated by a polynomial of fourth

degrce, for example

3 4
fe(y) = ay + a;y + azyz *agzyt o+ a,y (V-20)

It should be mentioned that the FA solution is less

sensitive to the grid size than the other methods.
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Node Exact iigi;:ic Exgiz?zggrox
1,1 0.2947 0.2948 -0.

1,2 0.2789 0.2790 -0.0001
1,3 0.2293 0.2294 -0.0001
1,4 0.1397 0.1398 -0.0001
2,1 0.2789 0.2790 -0.0001
2,2 0.2642 0.2642 0.0
2,3 0.2178 5.2178 0.0
2,4 0.1333 0.1333 0.0
3,1 0.2293 0.2294 -0.0001
3,2 0.2178 0.2178 0.0
3,3 0.1811 0.1811 0.0
3,4 0.1127 0.1126 0.0001
4,1 0.1397 0.1398 -0.0001
4,2 0.1333 0.1333 0.0
4,3 0.1127 0.1126 0.0001
4,4 0.0728 0.0727 0.0001

Table (V-4). Finite Analytic Solution
for Square with Heat Generation.
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.@ Finite
- | Node peire sl Iy L
1 U.2947 0.2011 0.0036
1,2 0.2789 0.2755 0.0034
1,3 0.2293 0.2266 0.0027
1,4 0.1397 0.1381 0.0016
2,1 0.2789 0.2755 0.0034
2,2 0.2642 0.2609 0.0033
2,3 0.2178 0.2151 0.0027
2,4 0.1333 0.1317 0.0016
3,1 0.2293 0.2266 0.0027
3,2 0.2178 0.2151 0.0027
3,3 0.1811 0.1787 0.0024
3,4 0.1127 0.1110 0.0017
4,1 0.1397 0.1381 0.0016
4,2 0.1333 0.1317 0.0016
4,3 0.1127 0.1110 0.0017
4,4 0.0728 0.0711 0.0017

Table (V-5). Finite Difference Solution
for Square with Heat Generation.
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Finite Error
Node Exact Element Exact-Approx
1,1 0.2947 0.3013 -0.0066
1,2 0.2789 0.2805 -0.0016
1,3 0.2293 0.2292 0.0001
1,4 0.1397 0.1392 0.0005
2,1 0.2789 0.2805 -0.0016
2,2 0.2642 0.2645 -0.0003
2,3 0.2178 0.2172 0.0006
2,4 0.1333 0.1327 0.0006
3,1 0.2293 0.2292 0.0001
3,2 0.2178 0.2172 0.0006
3,3 0.1811 0.1801 0.0010
3,4 0.1127 0.1117 0.0010
4,1 0.1397 0.1392 0.0005
4,2 0.1333 0.1327 0.0006
4,3 0.1127 0.1117 0.0010
4,4 0.0728 0.0715 0.0013

Table (V-6). Finite Element Solution for Square
with Heat Generation.

P R
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CHAPTER VI

APPLICATION OF FINITE ANALYTIC METHOD
TO THE LAPLACE EQUATION WITH COMPLEX GECMETRY

In this chapter a new procedure of implimenting the
FA method is given. This procedure is for th: problem
which has a relatively simple partial differential equation
and could be solved anaiytically. For example, finding
an analytic solution for a steady heat conduction with
constant conductivity, which is governed by the Laplace
equation in a problem with irregular geometry as shown in
Figure (VI-1), is almost impossible. Following, it will be
shown that the finite analytic method may be implemented
quite differently from the procedures used in the previous
chapters to solve the problem. Consider Figure (VI-1)
which shows the cross secticn of a groove bounded by two
slabs. Let the dimensionless temperature on top including
the groove walls be one and the bottom surfaces be norm-
alized to zero. Let the temperature at the side walls cf
the slabs vary linearly from zero at the bottom surface to
one at the top. This problem will be solved by the FA
method for different sizes of groove and slabs dimensions.
In some engineering designs it is important to know the

effect of the groove sizes on the temperature distortion

and to caiculate the heat flux at the bottom surface.
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viy = 0
x1 A;% X2 —ole x3 44

T

OB NG e

Figure (VI-1). The Cross Section of a Groove in the
Slab.
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Vi.1 The Method of Solution

The finite analytic numerical solution to this problem
can be solved by two different procedures. The first is to
subdivide the problem into many subregions (as was done in
previous chapters) and solve every nodal value numerically.
The second is to subdivide the problem only into three rec-
tangular regions, R1, R2, and R3 as shown in Figure (VI-2)
where only 2N nodal points are assigned to the common boun-
daries of the regions Rl and R2 and regions RZ and R3. In
this case, the analytic solution for each region can be ob-
tained by separating variables once the boundary conditions
on the common boundaries of the region are specified. The
common boundary conditions may be approximated by a function
of y (or a set piecewise continuous function) and the unknown
nodal values specified at N nodal points. That is, the
temperature functions along the boundaries between R1 and R2
and R2 and R3, fl(y) and fz(y) are approximated respectively
by the functions in terms of the nodal temperatures ¢4, ¥;,

¥N and y and

Wis ¥yaee-sby and y such as

fl(Y) = fl(WI: ¢2’°"’WN’hDY)
(Vi-1)

fz(Y) = fz(Wi: wé,---,WQ,h’Y)
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Figure (VI-2). Three Regions R1l, RZ, and R3 with
their Corresponding Boundary
Conditions.
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where h is the grid size and 1) wz,...,wN and wi, wé,..,wﬁ

are boundary nodal points.
The temperature distribution in each of the rectangular
regions YR1® YR2°® and Ypz Can now be obtained by solving the

Laplace equation with the corresponding boundary conditions.

Thus,

le le('bl, WZ:"',‘DN’h:X’Y) (VI'za)

‘pRZ = fRZ(wl, \PZ,---,‘PN,‘#i, ‘pé,'-°)‘p&,h’x))’) (VI-Zb)
sz = fRs(q’is Wé"'-’w&’h)x:}') (VI'ZC)

Each of the above solutions is the analytic soluticn respec-
tively to the regions R1, R2, and R3. However, only where
the unknown temperatures ¥y wz,...,wN and wi, wé,...,wﬁ
are determined, the equations (VI-2) provide the solution
for the entire region of the problem.
There are several ways of finding the unknowns ¥y

Yoseeaaby and wi, wé,...,w&. One of them is to generate
2N independent algebraic equations from the matching con-

dition that requires either the temperature or the tempera-

ture gradient (heat flux) must be continous at each of the

common boundary points.
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In this present work the FA method is applied to
finding the unknowns wl, wz,...,wN and wi, ¢é’°-~'¢ﬁ°
The solution's procedures are described as follows: As
the first step to attaining the solution, we select 2N
nodal points on the common boundaries (N nodal points on
each common line). Then, many square subregions (2hx2h)
can be constructed along each common boundary as shown in
Figure (VI-3). The unknown temperatures ¥,, wS""’wN-l
and Wé, w%,...,wﬁ_l on each common boundary are the inter-
ior nodal points of these subregions. A typical subregion
around an interior node, located at the point (x1, yn) along
the common boundary between Rl and R2, is shown in Figure
(VI-4). TW's and TE's are the temperatures on the west and
east sides of the subregions respectively. In the sub-
regions along the common boundary between R2Z and RZ, wé,
w%,...,¢&_1 are the interior nodal points as well as the
TW's and TE's are temperatures on the subregions' east and
west boundaries. For each element, a 9-point FA solution,
such as given in Table (IV-1), can be derived to relate the
centeral nodal value ¢ to the surrounding nodal values
TE(n+1), TE(n), TE(n-1), TW(n+1), TW(n), TW(n-1), Ynel and

Vn-1° For instance, in the Laplace equation one has:

b, = 0.044685 [TE(n+1)+TE(n-1)+TW(n+1)+TW(n-1)] +
0.2051315 [TE(n)+TW(n) *+ ¥__ 1 * ¥;41] (VI-3)
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Figure (VI-3). Nodal-Point Arrangement on the
Common Boundaries.

TW(n+1) Yn+1 TE(n+1)

TW (n) TE(n)
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TW(n-1) TE{(n-1)
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Figure (VI-4). A Typical Subregion Around an
Interior Node v, on the Common
Boundary.
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This finite analytic solution can be repeated for all
nodal points on the common boundaries. It should be
noted that the nodal values TE's TW's can be found from
the analytic solutions given in equations (VI-2) in terms
of the unknown boundary nodal values wn or wﬁ. An itera-
tive procedure may be set up to solve the unknown nodal
values v and wﬁ. That is to guess wn(O) and wﬁ(o) (for
all unknowns) as the initial trial values for Yo Vgaees¥yg
and wé, W%'°"’*&-1’ then equations (VI-2) provide the
solution fer any point like, TE, TW, TE and W in the
whole problem, which means the initial guesses for Y and

wﬁ will give us the initial values, TE(n)(O), TW(n)(O),
Tﬁl(n)(o) and TW’(n)(o). Using the 9-point FA formula, as
was mentioned above, equation (VI-3) will give us the new

values for interior nodal points wn and wﬁ, oT:

m+1 m mn Ip I}l
Vo = 0.44685 [TE(n+1)+TE(n-1)+TW(n+1)+TW(n+1]
m m
m m
+ 0.2051315 [TE(m)+TW(n) + v__; + v ,. 1  (VI-4)
m+1 m Ln E‘ Ip
b = 0.44685 [TE(n+1)+TE (n-1)+TW (n+1)+TW (n-1)]

m

4

m
+0.2051315 [TE (n)+TW (n) + 5 | + wh ] (VI-5)

This iterative process can be repeatedly carried out until

m+l _ m

it converges. That is |y ) < ¢ where ¢ is the con-
n n

vergence criterion.
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VI.1.1 The FA Solution for
Subregions R1, R2, and R3

In order to have an analytic solution for each sub-
region Rl1, RZ, and R3 let us first approximate the boun-
dary condition fl(y) and fz(y) respectively by a piece-
wise polynomial (i.e., segmental polynomial) so that the
problem may employ any arbitrary number of nodal points.
For simplicity and flexibility, a set of piecewise second
degree polynomials in finite subintervals is chosen to
represent the f;(y) and f,(y). Therefore, the function
Pi(f) is a polynomial of the second degree on the subin-
tervals (¥y, ¥y, ¥g), (Wzs ¥y ¥e)yennn. » (Uygs ¥yops ¥y)
shown in Figure (VI-5), or:

/ - ’ 12
Pi(Y) = COi + Cliy + CZiy (VI-6)

where

The boundary function fl(y) on each interval (wi-] 29

viopo wi) may be written as
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£,(y) = P,(y7) (i-2)h ¢ y ¢ ih (VI-7)
Similarly, the boundary fz(y) may be written as

£,(y) = P;(y"), (i-2)h <y < ih (VI-8)
where P;(f) is a quadratic polynomial on each interval
(Wi_p» ¥j.q» ¥j). After specifying £,(y) and £,(y), the

analytic solutions Yr1* YR2 and Yr3 for subregions R1, R2Z,

and R3 may be obtained as follows:

Region RI1: Vszl =0 (VI-9)
x =0, v =
fl(y) Y2 >y >0
x = x1, y =
1 y > Y2
y =0, v =0
y = Y1, v =1
Region R2: VZVRZ = 0 (V1-10)
x =0, v = £,0y)

el
[ ]
»
N
<
]

fz (y)

'z
]




Figure (VI-5).
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The Functiona. Approximation
for the Common Boundaries.

86

e e i taa ea s s



cq!ﬂ?‘-!"‘? AR T2
L 9 N T T v

OF POOR QUALITY 87

Region R3: Vszs = 0 (VI-11)

£, YZ>y20
1 y > Y2

The above problems are solved by the separation of
variables. The solutions le, ¢R2 and wRS involve only
2N-4 unknown nodal values Vos ¥gaeeesby g and ¢é, wé,...,wﬁ_l
since the nodal values *1’ wN’ wi and ¢ﬁ are known or
vy =¥ =0 and Yy Ty = 1. It should be noticed that if
the 2N-4 unknowns along the common boundaries are known

the solution for the temperature distribution of the problem

is found.

VI.1.2 The FA Solution for Subregion R1
The analytic solution y for region Rl with governing

and boundary conditions (equation (VI-9)) can be obtained

by the separation of variables. Since the Laplace equation
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is linear, the solution to the subregion can be superposed

by three solutions with simpler boundary conditions:

WRI = wl + '4’2 + ws (VI'IZ)

These three simpler problems and their boundary conditions

are thus:
Problem (1): Vzwl =0 (VI-13)
x =20, wl =0
£,(0) 0 <y<Y2
x = x1 v, =
’ L Y, <y <Y1
y =0, v, =0
y = Y1, v =0
Problem (2): Vzwz =0 (Vi-14)
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Problem (3): Vzws = 0 (VI-15)

et
=
\

When the above problems are solved and superposed one thus

has the solution

- bpy = Oq¥p * Ga¥p*e--*6p5.1%2i-1 * C2i Y2i 7
3
2 -163
- *+ Gyvy * Ona (VI-16)
é where
G. = I 2 0K in(r.. y) sinh(AqyX)
1 yI sinh(ry, x1) 0 1k 7 1k

k=1

_ 2 3k 1k .
Gri-1 = I FI sinh(xlkxl)(DZi-d + D35.7) sin(Ayyy)

k=1
sinh(xlkx)
G = ; 2 DZk sin(A,,y) sinh(A x)
2i k=1 vyl sinh(xlkxl) 2i-2 1k 1k

< -3
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_ 2 k. .
Oy = I, FTSIARG D) Pn-3 Sin0q) sinh (3 X)

2 1
Gu . = 3 . raiyl) -
N+l T D FTSIARG XD Ay [cos(Ayyy1)

cos (kr)] sin(xlky) sinh(xlkx) +

> 2cos (kn) . . -
L Krtanh (i xy SinOqpy) [sinh ()

¥ 4 sin? (kn/2)
tanh()‘lk)d) COSh()‘lkx)] * kil Knsinhﬁlk)’l)

sin(ulkx) sinh(ulky)

kn km - .
and Al yI° My <T The coefficient D's are

N-3 ™ ASk cos(N-S)kk h + B3k sin(N-S)Ak h
= AJk cos(n-3)xk h + BJk sin(n-S)xk h (VI-17)

where J =1, 2, 3, 1 <n <N, and Ak = Alk for sub-

region Rl1. The coefficients A's and B's are:

Alk = ;31;7— cos(zxkh) + ;iy—— s1n(2xkh) + %; - ;%;7
k k k
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Ayy = - =y 05 () - == sin(2h) ¢+
ALh 22, h AL h
k K X
Ag = (- 1+ 1) cos@rh) + —5— sin(2rh) - —
3k ot X7 k o K 1Y)
k  A2h 2x%h A>h
k k k
B, = -1 cos(2A,h) - —b— sin(2a,h) + —>
1k = To7n k 37 K 2
23%h A>h 23°h
K k K
B, = - —> cos(2A, h) + —2— sin(2A,h) - —2
2k 7T K X7 K NI
A%h A2h A\°h
K k K
B, = -3 cos(2a h) + (3= - =1~ sin(2a, h) + -
K T 7T K o T 32 K P
22 h k Aoh 2x h
k k K
(VI-18)

Again, for subregion Rl,xk = Alk‘ From the solution given
above, the corresponding solution for the derivatives with
respect to x and y (which is needed in evaluation of the
heat flux) can be easily derived. For example, by differen-
tiating the equation (VI-20) or (VI-21) with respect to y

we have:

jhd SR

Ay ylwl + G

y2¥2 * oo Gyzi-nyvei-1 t Cy2ivai
+... + G

yN*N + Gy(N+l) (VI-19)

where
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. 1k 1k .
Cy1 =, YT siahCixD) Do cos (Ayy¥) sinh(a;yx)
- 22
. 1k 3k 1k
Oy2i-1) =k, yrstmGy ey Pai-e * D2i-2)

cos(xlky) sinh(xlkx)

G = 1 22 1k D2K  cos(r..y) sinh(hy, X)
y2i T 2y YT SIAR( X1 “2i-2 1KY 1k
= 2X 1k 3k

G r

yN = B YTEImRG o P

N-3 cos(xlky) sinh(xlkx)

® 2
Cye1) = (I 71 sinh(xlkxl)[COS(XlkYI)-cos(kn)]

@ 22

_ 1c0s (k)
cos (Ayy) simh(Ayx) + I Yotanh (i) xT)

cos(xlky)[sinhixlkx) - tanh(xlkxl)cosh(xlkx)]

® 4u1ksin2(kw/2) .
L, KesinhGugpyD) sin(uyx) cosh(uyyy)

+

kn kw
where xlk y1° M1k T

VI.1.3 The FA Solution for Subregion R2
The same procedure used for subregion Rl may apply
to solve the analytic solution YR2 for subregion R2, given

in equation (VI-10). We thus have



S S o 93
OF POOR QUALITY
YRz T Qu¥p t et Qpiq¥piy Y Qg ¥y toees Quuy ¢t

Qp ¥1 * +ov * Qg5 ¥35.1 * Qjy ¥hy * --o

Y QY YNt Qe (VI-20)

where

-

2 1k _. ,
kil 7 tanh(x,, xZ) Dy~ sin(r,, ) [sinh(x,,x) -

tanh(xZRxZ) cosh(kax)]

2 3k 1k .
Qi1 T Iy anhg sy @254 * Dyilp) Sin(iy)

-tanh(AZkXZ) cosh(x2kx)]

i ) 2 2k, g
Qi = I - 72 tanh (35, x2) D2i-2 Sin(py)[sinh(xyyx)

-tanh(xzka) cosh(xzkx)]

- 2 3k . _
W kEI y< tanh(\,kxij DN-3 Sln(szY)[sxnh{Aka)

-tanh(kaxZ) cosh(x2kx)]

2 1k _. _
Qi = kEl ﬂ Sinﬁszksz DO sln(XZky) slnh(Aka)
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. o 2 3k 1k
QGi-1 =k, yZsiaRta, vy P2i-a P

sinh(Xka)

Vo g 2 2k
Ui = I, FISIARD, X2 P2i-2

ot 2 3k
1 = z -
v = [k, YT SInR(R,x7) DN-3

4 sin (kn/2)

QN+1 = x=1 kn sIn’h(quyﬂ

sin(u,pX) sinh(u,,¥)

94

21-2) Sin(gyY)

sin(AZRy) sinh(Aka)

sin(kay) sinh(x2kx)

The D's have the same definition as before (equations (VI-17)

and (VI-18)), but A = Aox for subregion R2, A = %% and

3¥p2 g2

k . . .
Mox < ;%. Again the 3y and 5% ©an be obtained easily

from the solution YR2 equation (VI-20).

29
R2
<y T Qv et Qaiinvaial Y Qaiver t

+ oo+ Q '

Quy¥y * Qhq ¥4
YNIN - Tyl L y(2i-1) 2i-1
*Quaiv2i Yoot Qv Gve

where

L. - 1 - Ak o1k
yl - yé tanh (A, x2) 7

(VI-21)

cos(kay)[sinh(Aka)
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-tanh(AZkXZ) cosh(Aka)]

- 22

} )" 1k
Q2i-1) © 72tanh (% sz(Dzl 4 * D2i.2) cos(Ayyy)
Y k=1 2k

™~

[sinh(Aka) - tanh(AZkXZ) cosh(Aka)]

-]

A2k p2k .
QyZi k 1 thaﬁH(*ZRXZj 2i-2 cosO‘ZkY)[SInh()‘ka)

-tanh(AZkXZ) cosh(xzkx)]

- 22
i A2k 13k
Uy = L, yZtanh(,x2) Dn-3 €08 () [sinh(hgyx)

rtanh(AZkXZ)}

x

oo A2k 1k
y1 =5 stlnh(xZszy Dy cos (Ayx¥) sinh(d,yx)

® 2

) 2k 1k
Yi-1) Tk TSR, R0 (354 * D3} -2)eos (A yyy)
sinh(AZky)
= A 2k 2%

y2i © L, YRR OGx2) Pzi-z €08 (i) sinh(gyx)

Do A2k 03k
N y251nh(A2kX27 DN-3 €058 (Apy) sinh(ayyx)

® 4u2ksin2(kw/2)

Q) = 5| TSTaR Gy i igxIcosh(uyyy)




L]

i’

-
=
=
A
-
-
-
_J
B
v
-
o
e

ORIGINAL FH2: z 17 96

oF POCR QU< T

VI.1.4 The FA Solution to Subregion R3
The FA solution for subregion R3 (equation (VI-11))

by using the separation of variables, is:

bRz = Sp¥q * Sp¥y * oeee * Sy5q¥2i-1 * S2ivai
o1 (VI-22)

where

DOk sin(ksky)[sinh(x3kx)

17 2 Y3tan(ig x3)

-tanh(xskx3) cosh(A3kx)]

T 2 3k plk
S2i-1 = X " ytanhooox®) (P2i-4 * Dzi-2) sin(zpy)
k=1 3k
-tanh(xskx3) cosh(x3kx)]
S,. = 1 - 2 D2k sin(AL y) [sinh(h .x)
2i T L2,  Y3tanh(3g x3) 2Zi-2 3kY 3k
-tanh(A3kx3) cosh(x3kx)]
S, = 1 - 2 DK Sin(\,iy) [sinh(}.,x)
N oy Y3tanR(R;x3) ON-3 13 3k

-tanh(x3kx3) cosh(\skx)]
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® 2 1
S = § - . [cos (A,,y2) - cos(kn)]
N+1 = 2, 7 Y3tanh(ig x3)° 5 3k

[sinh(kskx) -tanh(kstS) cosh(Askx)] -

. 2cos (kr)
k=1 Kmsinh(ig, x3)

sin(ksy) sinh(xskx) +

> 4 sin?(kn/2) _. .
I Y sinh(u, x3) SinGugx) sinh(ugy)
k=1 3k
And:
y
R3
—= =S _yr1 + ... + 8§ vy. , + S Vi, +... +
3y y1¥1 y(2i-1) 2i-1 y2i 21
SNPN * Sy Nel) (VI-23)
where:
S, = L - 3k plk oS (Ao Y)[sinh (A, X)
yl .7 Y3tanh(Og x 0 3k 3k
-tanh(x,kx3) cosh(ASkx)]
© 2
- . 3k 3k 1k
Syai-1) Tk T y3tamh gy Pai-4 * P2i-2)

cos(xSky) [sinh(xsky) - tanh(x3kx3)

cosh(xskx)]

A e
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© —n3k DZX  cos (A, y) [sinh(r, x)
y2i T I; T Y3Eanh(hg x3) -2i-2 COS Uizl ISimildgy

-tanh(ASka) cosh(xskx)]

z - ZASk D3k cos (2 Y[sinh(x,,. Xx)
YN © 2y Y3Eamh (35 x3) N-3 3kY A3k

-tanh(xstS) cosh(xskx)]

szk
) y3tanhT13kx3) (C°5(X3ky2) - cos (kn)]

Syoeny T E

1
cos(xsky)[sinh(xsky) -tanh(A3kx3) cosh(xskx)]

® 2cos (k) )
kil yZSiﬁh(ASkXST COS(XSRY) Slnh(kSkx)

. _4 sin?(kn/2) _.
t mmﬁ'y—z% sin(ugx) cosh(ugy)

Again, the D's have the same expressions, as given in

equations (VI-17) and (VI-18), for subregion R3 A ™ A3k’

kn - kn
As was mentioned, if the unknown temperatures, Vpseee¥y
and 0i,¢é,...w& are predicted, then equations (VI-16) (VI-20)
and (VI-21) will provide the solution for any point in the

respective region.
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VI.2 Steady Two Dimensional Heat
Conduction with Groove

In industrial machines, it is often necessary to have
a groove in the solid slab. For example, the oil reservoir,
in bearing thermocouple, is good for temperature measure-
ment. Instalation of such devices produces grooves in the
pipes or channels, causing distortion in the temperature
distribution and heat flux. A typical two-dimensional groove
is shown in Figure (VI-1). In order to solve this problem
with the FA method the entire region is subdivided into
three subregions, R1, R2, and R3, as shown in Figure (VI-2).
The analytic solution for each of these subregions was ob-
tained in terms of unknown nodal point variables Vs ¥gseee
vy and wi, wé,...,wﬁ which are equations (VI-16), (VI-20),
and (VI-22). In this section the finite analytic solutions
of the problem are obtained by combining the three analytic
solutions in the subregions. In order to obtain the nu-
merical results the iterative method described in Section
(VI-1) is employed, the procedure of which is briefly out-
lined here. The following calculation steps for the finite
analytic algorithm are also depicted in the flow chart given
in Table (VI-1).

(a) Start with an initial guessed approximation of

the temperatures, wéo) and wﬁ(o), for all points

(n) on the common boundaries.




(b)

(c)

(d)

(e)
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Find the temperatures TW's, TE's, TMf's and Té 's
from the analytic solution in each subregion or
equations (VI-16), (VI-20), and (VI-22) respec-
tively (TE 's and ™ 's are obtained from the
same equation (VI-20)).

Employ the 9-point FA formula (equation (VI- 32))
to fird the new v and wﬁ as described in the
equations (VI-4) and (VI-S).

Repeat steps (b) and (c) until a convergence cri-
terion is met.

Once the temperatures Vs Yoseety and wi, ¢é,...
wﬁ are known the analytic solution for each sub-
region R1, RZ2, and R3 (equation (VI-16), (VI-20),
and (VI-22)) may provide the solution at any
desirable point in the whole region. The temper-
ature gradient at any point is also available
from equations (VI-19), (VI-21) and (VI-23). The
numerical results for the steady two-dimensional
heat conduction with three different sizes of

groove, as shown in Figure (VI-1), is presented

here.

In all three cases both isotherms and temperature, the

gradient on the bottom surface of the slabs are plotted in

Figures (VI-6), (VI-7), and (VI-8). 1In these figures the

isotherms are plotted with a temperature interval y of
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Set m=0, ¢§ and WAm = Yp» n=1,2,...,N

Calculate the temperatures TW(n), TE(n),
TW (n) and TE (n) from the equations
(VI-16), (VI-20), and (VI-22).

A

Internal iteration on the common boundaries
by using 9-point FA formula and finding

1
the new values of wn, -

No

A

Has the solution converged?

Yes

Y

Calculate the temperatures and heat flux
at any desired point.

STOP

Table (VI-1). The FA Algorithm

Step

Step

Step

Step

Step
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(a)

(b)

(c)

(d)

(e)



WAL B A1 RS ) mu"'v im l”' LA

3

102

.25. It should be noted that the number of nodcs used
to form the temperature function on each boundary is

chosen to be five (N=5) in the present calculation.

Vi.2.1 Numerical Results for
Symmetric Groove

The solution to the problem with the groove between
the symmetric slabs is shown in Figure (IV-6). 1In the
calculation the geometry is taken as x1 = 3, Y1 =1, x2 = .5,
Y2 = .5, x3 =3, and Y3 = 1, The temperature on the top,
including the groove walls, is normalized to one and zero on
the bottom surfaces while the temperature on the side walls of
the slabs is assumed to vary linearly from zero at the bottom
to one at the top. This is to simulate the temperature
distribution at the large distance from the groove, where the
heat conduction is essentially one-dimensional in the y direc-
tion and the temperature distributicn is linear in y. If
we take five nodal points on each commcn boundary, there will
be a total of six unknown temperatures wz, ws, w4, Wé. wé,
and wa in this finite analytic procedure because the temper-
ature is at the bottom and top of each boundary v = wi = (
and Yg = wé = 1 are known from the be ndary conditions.
The numerical results are obtained by successive iterata-
tion of the nodal values on the common boundaries with the
calculation procedure discussed in the previous sections.

It should be noticed that the initial values for vy and wﬁ
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to begin the iteration are chosen as a linear function of

)
y, that is wﬂ = wno = yn(n = 1,2,...,N). The FA solution

converges after twelve iterations within the error of 0(10'~).

The corresponding nodal values Vs w; and also the tempera-
tures TW(n), TE(n), fw'(n) and TE’(n) (n=1,2,3,4,5) are
presented in Table (VI-2). Since th~ temperatures at the
common boundaries are known, the solution for the whole re-
gion can be calculated from the analytic solution given in
equations (VI-16), (VI-20), and (VI-22). The temperature
gradient on the bottom surface (%%l ) can also be obtained
from equations (VI-19), (VI-21) andO(VI-23). The isotherms
and temperature gradient on the bottom surface are shown in
Figure (VI-6). It shows that the tcmperature and heat flux
distributions for the square groove extend to about the

groove's width,

VI.2.2 Numerical Results for
Unsymmetric Groove

This problem is almost the same as the previous problem
except the geometry is unsymmetric. The slab thickness
on the right is set Y3 = .75 instead of Y3 = 1 and the other
Jimensions are kept the same as before. The numerical re-
sults of the FA solution for the temperatures on the common

boundaries Vi and wé and TW(n), TE(n), Twl(n) and TE’(n)

are listed in Table (VI-3) as well as some isotherms and

temperature gradient for this problem are plotted in
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TW (n) v TE(n) | T4(m) | ! » ’(n)
1 0.0 0.0 0.0 0.0 0.0 0.0
2 0.1974 }0.2128 {0.2263 |{0.2263 |0.2128 }0.1974
3 0.3965 | 0.4334 1 0.4618 | 0.4618 [0.4334 | 0.3964
4 0.5965 ]0.6769 {0.7182 |0.7182 [0.6768 |0.5964
5 0.7719 1.0 1.0 1.0 1.0 0.7719
Table (VI-2). The Numerical Results for the Unknown

Temperatures on the Common Boundaries
and Temperatures TW(n), TE(n),
and TE(n) for Symmetric Groove.

™ (n),
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(a)
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(b)
Figure (VI-6). Tsotherms Distortion and Temperature
Gradient Distribution for Symmetric

Groove.

(a) Distortion of Isotherms Near the
Groove.

(b) Temperature Gradient Distribution
on the Bottom Surface of the Slab.
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oF pooR Q-
n | T™W(n) v TE(n) | TW(n) | ¥ TE (n)
1 0.0 0.0 0.0 0.0 0.0 0.0
2 lo.1976 l0.2132 lo.2271 |0.2297 |0.2192 |o0.2084
s 10.3967 lo.4340 lo.4630 |0.4674 |0.4448 l0.4177
4 lo.s967 l0.6773 lo0.7191 ]0.7229 j0.6890 |0.6262
5 lc.7720 f1.0 1.0 1.0 1.0 0.8096

Table (IV-3).

The Numerical Results for the Unknown
Temperatures on the Common Boundaries
and Temperatures TW(n), TE(n), TW(n),

and TE(n) for Unsymmetric Groove.
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Figure (VI-7). It illustrates the maximum heat flux in

the groove which has shifted to the right.

V1.2.3 Numerical Results for
Step Groove

In this problem Y3 = .5 and the other dimensions are
kept the same as before. The numerical results to this
problem are shown in Table (VI-4). Some isotherms and a
temperature gradient (on the bottom surface) are also shown

in Figure (VI-8).

VI.3 Discussion

In this chapter a different procedure of the FA method
was described. Although this solution procedure is demon-
strated for the Laplace equation with simple boundary condi-
tions, it can be extended to other linear partial differen-
tial equations with more complicated boundary conditions.

In this new procedure for the FA solution the probelm was
subdivided into only three subregions instead of subdividing
it into many subregions as in the convention procedure of
the FA method. This is only possible when the governing
equation in each subregion can be solved analytically with
corresponding boundary conditions. The FA analytic solution
thus is continuous and differentiable in each subregion
domain. The errors in this FA method are introduced only

on the function used to approximate the common boundary
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(b)
Figure (VI-7). Isotherms Distortion and Temprature
Gradient Distribution for Unsymmetric

Groove.

(a) Distortion of Isotherms Near the
Groove. ’

(b) Temperature Gradient Distribution
on the Bottom Surface of the slab.
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n| ™) | v, TE(n) | T™w(n) v TE (n)

1 0.0 0.0 0.0 0.0 0.0 0.0

2 10.1983 10.2146 |0.2302 }0.2428 l0.2429 0.2464

3 ]10.3978 10.4361 [0.4676 |0.4891 |0.4883 0.4944

4 10.5976 10.6789 |0.7225 |o0.7416 0.7389 |0.7455

5 10.7724 (1.0 1.0 1.0 1.0 1.0
Table (VI-4). The Numerical Results for the Unknown

Temperatures on the Common Boundaries
and Temperatures TW(n), TE(n), TW(n),
and TE(n) for Step Groove.
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v =1
p = 0.75
\ X
y = 0.25 \
—— \
y = 0.0 \
(a)
v
ay
2 | 0
1 M
—Q\\—* 1 A 2 A A
2 3 4 X
(b)
Figure (VI-8). Isotherms distortion and temperature

Gradient Distribution for Step Groove.

(a) Distortion of Isotherms Near the
Groove.

(b) Temperature Gradient Distribution
on the Bottom Surface of the slab.

o
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conditions. In this present study the piecewise contin-
uous second-order polynomials are used to approximate the
common boundary conditions, thus the FA method's error is
of the order (h3). The errors can be reduced if the common
boundary functions are approximated by higher order piece-
wise continuous polynomials or third degree spine functions.
It should also be noted that the present problem can be
solved with more complicated boundary conditions on the top
and bottom surfaces instead of one at the top and zero at
the bottom. In such a case the FA solution can be obtained
by the same procedure for equations (VI-16) and (VI-19) to
(VI-23). The only change needed is that the N+1th coeffi-
cients for the equations (VI-16) and (VI-19) through (VI-23)

are reevaluated for the new boundary conditions.

b
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CHAPTER VII
CONCLUSION AND SUGGESTIONS

The finite analytic (FA) method introduced by Chen
and Li [3] was applied to solve the Poisson equation nu-
merically. The FA method utilizes the analytic solution
obtained in a subregion of the problem to form the alge-
braic functional relation between a nodal value in the sub-
region with its neighboring nodal values. In the present
investigation many FA formulas with different kinds of
boundary conditions were derived. The accuracy of the FA
method was examined for the case of the Poisson equatior
which represents a two-dimensional heat conduction in
rectangular shape with uniform heat generation having two
insulated boundaries and two isothermal boundaries. In
this case, the FA solution was compared with the S-point
central finite difference (FD) solution and the finite
element (FE) solution and also with the exact solution.
The FA solution was shown to be more accurate than the
other methods under the same overall conditions.

Another new solution procedure utilizing the FA method
was applied to solve the Laplace equation with complex
geometry. In this new procedure, instead of subdividing

the problem into the regular small subregions, the problem
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was subdivided into regions where the common boundary
conditions are approximated by a piecewise polynomial that
the analytic solution can be obtained. In the example
considered, three large subregions were considered and

the 9-point FA formula is only used for the boundary

nodal points.,

The finite analytic (FA) solution,although requiring
more analytic manipulation,involves the following advan-
tages:

1. The computational time for the finite analytic
solution is not a problem for the linear partial differen-
tial equation because the finite analytic coefficients are
invariant and can be calculated once for each subregion
with the same type of boundary conditions.

2. The accuracy of the FA solution, although depending
on the grid size, is less sensitive to it than the FD
solution. Indeed, the only approximation made in the FA
method is that the boundary functions fE’ fS’ fw, and fN
are approximated by second-degree polynomials.

3. The algebraic equation system, derived from the FA
methods is stable and has faster convergence rates.

4. The FA solution is differentiable so the derivative
of the dependent variable obtained from the FA method is

generally more reliable.
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Regarding the suggestion for the further use of
the finite analytic method it should be remarked that
the application of the finite analytic method is not
limited to the partial differential equations of heat
transfer problems. The FA method is a general numerical
solution technique for problems involving either ordi- !

nary differential equations or partial differential ones.

The principle of the FA method may be readily extended to
_i the three-dimensional problems. In the case of steady é
three-dimensional heat conduction problems, the local
subregion may be a rect;ngular cube and the finite analytic
formula (similar to equation (VI-4)) may be derived. The i
FA method is especially powerful in solving the governing
equations with linear partial differential operator of con-
stant coefficient because the subregion may be taken rela-
tively large. In case of nonlinear partial differsntial
equations, normally the local linearization is made to
obtain the local analytic solution. In this case, the FA é
method requires the local linearization and the approxi-
mations of the boundary conditions. However, the FA method
eliminates the error in using difference approximations
due to the Taylor series expansion of the derivatives as
with the finite difference. The FA method minimizes the
problem of the numerical diffusion that happens to the 1

upwinding approximation used in the finite difference or
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finite element methods when the coefficients to the lower
derivative terms are large (i.e., large Reynolds number
flow in fluid mechanics problems). The accuracy of the FA
solution may be improved by using higher degree polynomials
on the bourdaries. In this case a 17-point FA formula can
be derived with five nodal points on each bouridary so that
the boundary functions are approximated by 2z 4th degree
polynomial.

Further cetails of numerical treatments and analytic
solution teciniques used in the present investigation refer

to references [18] through [25].
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APPENDIX A

THE FA SOLUTION OF TWO
DIMENSIONAL HEAT CONDUCTION

00108C S0 00SSPOSCEI SIS CLENTENIONPISI8000808000
go110¢C APLYIED PINITZ ANALYTI. RME™HOD
00120C TVO DIMENTIONAL STE ADY STATE HEAT CCYDUC-
00130C TIOR WITR CONSTANT HEAT GENTRATION.LTPF?T
00140C AND LOWZR SIDES ARE ADTIABATIC.RIGRT AXL
00150C OPER SIDES ARET AT (6 D2GR:&E,
00160C A GADSS-SZ2IDEL ITZ3ATIOY IS ®2PLOYSD.
00170C SPS0SU SIS VSR LE RS CEOIVESUSVUINIPIEEOPOESS
0017S PROGRAM PDT(INP?UT,007PUT,3ZSULT,TAPES=IBPUT,
00176+ TAPZ6=0UTPUT,TAPZS=RISULT)
00180 DIMZSSION AA({9) ,AB(3),AC(3),AD(9) ,AB(9),
00190+ AP (9) ,AG(9) , AH(J) ,AZ(9),7(10,10)
00200 BEAD*DX,DY, N,ITNYX,EPS
00201C N IS NOUMB®ER OP X ON A SIDE
00220 G=DX/DY
00230C
| 00240C
| 00281C. T +T a=1
00242cC Ix 1Y
00852¢C
004860 CALL Co®?F 1(DX,0Y,G,2))
00470 PBINT (8,301)
00480 PRINT (8,302), (AA(I) ,I=1,9)
00490 CALL co2Pr 2(DX,LY,G,AB,AC)
00500 PRINT (8,303)
00510 PRINT (8,304), (2B (1) ,AC(I),I=1,9)
00520 CALL Ccof? 3(DX,DY,G,3Z,AF)
00530 PRINT (8,305)
00540 PRINT (8,304), (AE(I) ,AP(I),I=1,9)
00550 CALL COZP 4 (DX,ZY,53,3D,2G,AH,AI)
09560 PRINT (8,306)
00570 PRINT (8,304), (AD(I) ,AG(I),XI=1,9)
00580 PRINT (8,307)
00590 PRINT (8,304), (AH(I),AI(I),I=Y1,9)
00595C
00600C COP SCVSCOC S ITRITSS SOOIV OPRE20¢000000080800C808TPBESERY
00610C ALL THE COEFPICICZMNTS :OW ARE KNOUN .
00620C LET 0US SCLVZ THT SYSTEM OPF PQUATIONS 10 GET THE
00630C MONMERICAL SOLOTION.
OOGQOC SO0 S0000C0 ¢TSS CS000CTONTROEINSISCININOOR2SOESSCSERSeCOS
g0645C
00650 NP1= e
00660 D50 33 1=1,8P1
00670 T(I,¥P1)=0,.0
" 00680 DC 33 J=1,401%
00690 T(NP1,J)=0.0
N 00700 DO 33 JJ=2,uP1
- 00710 33 T(X,J)=0.0
K 00720 ITER=0
X 00730 111  ITCR=ITINe? 1
= 00740 DO 240 I=1, N
00750 DO 240 J=1, ¥
90785 HOLOT=T (1,J)
30760 IP(T.22.1.,AMD. J.2Q.1) GO T0 200
r 00770 IP(I.22.1.AND.J.2Q.2) GO <O 300
E 00780 IP(I.5Q. 1) GO TO %00
00790 IP(I.EQ.2.AD.,J.22.2) GO TO 600
E 30800 IP(I.EC.2.AND.J.2Q.1) GO TO S00
00810 IP(1.82.2) 60 10 700
00820 IP(J.EQ. 1) GO TO 800
00830 IP(J.EQ.2) GO T0 900




,,

L o

'
A
{
1
i
i
&l
‘W
i

00840
00850 200
00860+
00870
00820 300
00890+
00900
00910 800
00920+
00930+
009450
00950 S00
00960+
00970
00980 600
00990+
01000
¢1010 700
01020+
01030+
01080
01050 800
01060+
01070«
01080
01090 900
01100+
01110+
01120
01130 112
011460+
01150+
01160 240
01165
01170
01171C
01172¢
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GO TO 112
1(1,1)-Ar(1)-1(3.3)0!1(2)-r(z,z)oax(3)-1(3,1)»11(7)
ST (1,3) ¢AI (3) T (2,3) +AL (9)

GO TO 240
T(l,Z)-AC(l)OT(J,J)’AG(Z)‘T(J,Z)0!6(3)'1(3,1)016(7)
*T(1,3) *2G(8) *T(2,3) +AG (9)

GO TO 240
T(l,J)-AC(i)'T(J,J01)0AC(2)‘T(J.J)OAC(J)‘T(J,J-l}O
AC(G)‘?(Z,J-1)‘lC(S)‘T(l,J-!)0AC(7)'1(1,J0|)0AC(8)‘
T(2,J¢+1) +AC(9)

GO TO 240
T(Z,?)~AH(1)'7(3.3)0AH(2)‘T(3,2)0AB(3)0?(3,1)0
AH(7)'?(1,3)6&H(Q)‘T(2,3)0AH(9)

GO TO 240
T(2,2)=AD(1)0?(3,3)0AC(2)‘?(3.2)0!0(3)‘1(3,1)'
10(7)-1(1.3)oaa(a)or(z,a)onn(s)

GO TO 240
T(Z.J)=AB(1)0?(3,301)018(2)'T(J,J)oA!(])‘T(3,J-1)
0AD(U)‘T(2,J-1)0AB(5)‘T(I,J-1)OAE(7)‘1(1,301)0AB(8)
*T(2,J+1) +aB(9)

GO TO 280
T(I,1)8AF(1)OT(IO1,])0AP(2)‘T(I01,2)0!?(3)‘1(101,1)
0AP(5)'T(I-1,1)0AF(6)'T(I-I,2)01?(7)'((1-1,3)0AP(8)'
T(I,3) ¢AP(9)

GO TO 240
T(I,Z)=A3(1)'T(IO1.J)0A3(2)‘T(I’1.2)015(J)‘T(Ifi,t)
0A2(5)‘T(I-1,1)032(6)‘T(I-1,2)0A2(7)‘1(I-1,3)
052(8)'T(I.3)0A£(9)

GO TO 240
T(I,J)-AA(I)-r(rol.Jo1)oAA(2)-r(101.d)onl(3)tr(xoi,
J-!)otx(a)vr(l,a-1)oAA(S)tT(I-!,J-!)oAA(s)-r(r-1,J)o
AA(?)'T(I-1,J0?)‘AI(B)OT(I.JO1)OAA(9)

CONTIND 2

IP(ABS(T(I,J)*HOLD?).LS.EPS) GO TO 113

IP(ITER-ITRAX)1l1,111,118
END OPF THE ITIMATION,

PRINT THZ RESULT.

01180 118 PRINT(8,39¢8)

01190
01200
01220
01225
31230 119
01280 999
31250 301
012600
31270 302
01280+
01290+
01300«
01310 303
01320+
01330+
01340«
01350 304
01360¢
01370¢
01380+
01390 308
01800+
018100

PRINT (8,399),N,ITER
PRINT (8,401)
DO 119 II=1,N¥P1
IsNP 1e1-TT
PRINT (3,999), (T(I,J),J=1,Np1)
PORMAT(3X,5(3X,210.5) )
FORAAT (////3X,*THE COSTFICIINTS OF T2 POINTS VAICHe/
JX, *SOU0UD POINT P POR ZLZw*rNT 3 *//15%,%3A(1)*/)
PORFAT (3X,*C (42) =,34, 214,871, «C (¥) *,3x,514,.8/
3X,*C(YW)*,3X,710,9/31,eC (4) *.3£,214.9/312,
*C(S¥) *,3I,E1.8/31,eC(5) *,3L,214,8/3Y,8C(S%)e, 23X,
E14.8/3X,4C(E) ®,3X,514,3/37,6C(F) o0 ¢ S14.8,)
PORNAT (//3¢,#27R TLTNINT RS, AB(I) ANC AC(I) aRzey
IX,*THE COBFPICIENTS OF THZ POINTS SAICH S20R20UND s/
3X, *POINTS P A%D Q,IESPZCTIVELY.o//15X,%AB(I),121,
*AC (I)sy)
roan;r(zx,-C(x:)0,2(31,E1u.8)/3x.OC(N) *,2(31,214,8)
/31,8C(Nd)e,2(3X,214,8) /3K, sC(N) *,2(IX,E14,9) /3,
®C(5W)*,2(3X,214.2) /3X,C(S) *02(3X,314.3)/3%,0C(ST)w,
2(3X,214,8) /3x,8C;¥) *,2(IX,S16,0) /3%, eC (K) ®,2(31,514,8) )
TOXNAT (//3X,°P0% SLIMENT P, A:(I) AXC AP(2) Aatsy
3T, oTAE COIFPICITITS OF THT POINTS WRICH SOURNOUNDe/
IX,*THE POINTS P AND Q(ON SIDT X20) ,"ZSPECTIVELY, o )
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01820« 150,°08 () ¢,12T,%AP () ®))
01830 306 PORAAT(//3X,F R FL wIN® DGAT, AD(L) ,AG(I) ,AKH(I)®,
0140400 IX, ®AND AT (I) \RZ TU® COYFPICISNTS OF TH® POTINTSe/
01450¢ I, *WHICH SOUFROUND P ANT Q.e®//715X,%0L (1) ®,121,0AG (1) ®/)

01460 307 FORRAT(/15X,e2 4 (T)® 12X, (1) o/)
01870 398 POAMAT (3X,eSTI*DY-STATE HTA™ CINDUCTION YITHe

01880 /3L ,%CONSTANT HEAT GENERATICN IN A FLAT PL.TE WITHe/
01090 IX, *PARANETERS, o/)
01500 399 PORPATI3X,en =e,031/)X,°ITHAX we, 1))

01310 201 PORAAT(3X,*THS TERPRATOR® PIELD IS GIVEN 8Ye/)
01520 END

015%21Cc

01%22¢C

01%30C 0080000000000 00300000000800000000CE000C0C0O00O0CCROCORSTEES
01%4a0C PIND THE COPPPICITNTS POR 2] INENT A
01350C A(I) AQE TRT COZPPICYENTS OF THZ PCINTS VRICH
01560C SORRCUMD POINT N,

01870C C00 09000000 CUCLLA0CICITEENCREeR00G0000EI0C0CCOO0C0COOOT0ES
01580 SUBROUTIN® CO:F 1(0X,DY,G,Ad)

01390 DINENSION AA(Y)

01591 PI=3, 181592654

01600C

01610C N¥ () (2) R(Y)

01620cC {eeecrcccrcccncsccnaaa;

01660C : : :

61670C : P H

01680C $ (1) temomccccncbocacccunaaE(N)

01710¢C : H ]

01720cC : : :

01730C : : :

01740C SV (%) S (6) SE(7)

d1781C

01782cC

3172580 DO 10 I=1,9

31760 10 AL (I)=0.0

317170 0O 20 I=1,9

91780 DO 20 J=1,2

01790 B=(PI/2.)J

31800 Ke2e3-19

01810 I=s(PI/2.) K

01820 GO TO(1,2,1,2,1,2,%,2),7

J1el0 1 AAA=(1,/B-2,/mee])e(5INL {N®G) /SINH (2.92¢G) ¢+SINM(D/G)
J316420¢ /SINH(2.%8/G))ecIN (D)

Ji8s%0 GO TO0 20

21860 2 llllﬂ./B‘OJ'S!N(8)'SIﬂﬂ(B'G)/SINN(2.‘B°G)
01870 GO TO 20

91871 ) llA-l.'Dl“Z/r"IOSI“”(P/C)OSXW(P)‘(‘./TANM
01872 (2.°8/3) =1, /ST (2.91/G) ¢ 1. /SING (B/G) =1, /TAND
01873 (e/G))

01900 20 Ad (1) =AA (D) ¢AAA

01910 RETURN

01920 END

01921¢C

01922c

01923c
0‘9]0:0000oooooooooooooocooooootooocooocoo.ooooooo00000
0t9a0cC PIND THE COSFPICIT.®T I TrereNT? BC,

01950C AR (I) AND AC(I) A°FS COTPRICITINTS P THP FCINTS
01960C WHICH SORRCOND POINDS P AND Q *FsnICTIVTLY.
ol’?ocoooooooooooootooooooooooocoocoooooooooooooto-ooco

01971¢C




RRL Y

[ A

01980
01990
01991
02000C
62010C
02020¢C
02060C
02070C
02080¢C
02090C
02120C
02130C
02180C
02150C
02160C
02170C
02180
02190
02200
02210
02220
32230
32230
22250
32260
32270
32280+
02290+«
02300
32310+
32320
023130
02330
02350
021360
02370«
02380«
02390
02600+
02810+
02620
32830
02040+
024%0
02360
02870
02380+
02890
02500
02510
02520
02530
023540
02550+
02560
0257¢
02580
02590«
02600
02610
02620

10

9

ORIGINAL Pay. 1
OF POOR QUALITY H9

SUBROUTINE CoO®P 2(0X,D0?,G,AB,AC)
DIMENSION AB(9),AC(9)
PI=3,101592654

LA ] " )4
3 H 4
b H H
| P LD iy sB
3 : P H
] : Q0 ]
b ® H
SRI/I1777777777777777777752
br/DY=0
DO 10 I=1,9
AB(I)=0.0
AC(I) =0.0
0O 20 I=1,9

DO 2C J=1,28

B= (PI/2.)eJ

K=2eJ-1

I= (PI/2.)°K

Go 70(1,2,3,4,5,6,7,8,9),1
IBE'(2./!“20(2./(-8./1"3)‘SKN(!))'SXNH(!‘G/2.)/SI§

;(!‘G)‘COS(X/J.)O(1./8-2./8“3)‘SIH(!)'COSH(B/G)/COSH(
« ®*B/G)

ICC'(Z./X‘°26(2./X°9./!“3)‘SIW(X))‘S[NH(X‘G/?.)/SII

H(!‘G)0(1./8‘2./3"3)‘SI”(B)/COSU(Z.'!/G)

GO TO 15

ABB'Q./E"J‘SZN(B)‘COSH(B/C)/COSH(Z.‘B/G)

ACCIU./B“J‘SIN(B)/COSH(2.'8‘6)

GO TO 15
lBB'()./X°‘20(2./Y-ﬂ./!“3)‘$f!(l))‘(\.-TANU(!‘G/Z.)
/TANH(X‘G))‘COJH(X‘G/:.)'COS(X/Z)0(1./8-2./5“3)‘SIN(U

) *COSH(B/G) /20T (2.°2/3)
ICC-(2./!“20(2./!-9./I‘°3)‘SI?(X))‘(COSH(X‘G/?.)-SI

:ﬂ(l‘G/).)/TlVN(X‘Z))O(1./8‘2./5“])‘SIN(B)/COSH(Z.‘B/
)

GO 10 1%
ACCs (-9./Xe02416. /Xe@3eS (M (X)) ® (1. -TANH (X9G/2.) /TANN
(X*G)) *COSH (T*G/2.)
ABB=ACCCO5 (X/2.)
GO TO 15
ACC-(6./!"2-“./!“3'5!!(!))‘(1.-TANH(X‘G/2.)/TANH(!‘
G)) *COSH (X*G 2.
ABB=ACC®CCS (X/2,)
GS TO 15
ABE=0.0
ACC=0,0
GO T0 15
IBB-(G./!'°2-9./X°‘)°SIH(!))‘SI'N(X‘C/Z.)/S!!H(!‘G)
*COS(%/2.)
Acc-(s./x--:-s./x-ojosru(x))-s:nn(xoc/z.)/sx!n(xca)
GO TO 1S
Acc-(-s./10'2016./!00)‘Stl(x):‘SIIB(!'G/2.)/SINH(!°
S)
ABD=4CCeCOS (X/2.)
GO TO 15
ABB-J.OCXO‘Z/B"]O(I.-COSH(B/G)/COSH(I.OBOG))OSI!(B)




02630
02640
02650
02660
02670
02680C
02690C
02700C
02710C
02720C
02730
02740
02741
02750C
02760C
02770C
32780C
02790C
02830C
p2840C
02850C
028940C
02900C
02%10C
32920C
02930C
02940
82950
02960
02970
02980
02990
03000
03010
03020
03030
03040
03050+
03060
03070+
03080
03090
03100
03110
03120
03130
03140
03150
03160
03170
03180
03190¢
03200
03210
03220
03230¢
03280
03250
03260
03270
03280+

15
20

®
DT/DX=0 /7 Q s P
S

10

.5 - o -
o™ i d
oF oo Lot e

ACC=2,e0tee2/Bes38(1,-1,/COSH(2.9B#G)) *SIN (B)
AB(I) *AB(I) +ABE
AC(I) =AC(I) *ACC
RETORN
END
0880000 0CSPSE LSS P SEEOSCELCS0930R 0000000008808 888
PIND TH® COTPPICIENTS POR BLENENT EP,
AE(I) AND AP(I) ARE THZ COEPPICIENTS CP POTINTS
WHICH SURR200NZ POINTS P AND Q RESPECTIVELY.
0039000 0C0CCS IS PRNSICACICEEIBSLEEITEI000000000080SS
SUBROUTINE COE® 3(DX,DY,G,AZ,AP)
DINIZNSION AE (9) (AZ(9)
PI=3.181592654

§/0ccmccccnna-

A +0 08 80 s 06 20 s

/
H]

po 10 1=1,9
AZ(I)=0.0
AP(1)=0.0
DO 20 21,9
DO 20 J=1,25
B=(PI/2.) *J
K=2%J-1
I=(PI/2.) *K
GO T€(1,2,3,4,5,5,7,8,9,T
ABS=(2./X%@2¢ (>, /2-9./08%3) ¢SL Y (X)) *SIVH(X*G/2.)/SIN
A (X*G)*®COS (X/2.) ¢ (1./B=-2./B%*3) sSIN (B) *COSH (B/G) /COSR (
2I.E.G’
APP=(2./X%#24(2./X-8,./X%e3)sSIN (X)) *SIND (X*G/2.) /SIN
H(X*G) e (V./B-2./B%e3) ¢SI% (B) /CCSH (2. 9E9G)
GO TO 16
APP=(-8,./X®¢2¢16,/X%¢3IsSIN (X)) *SINEA (X*G/2.) /SINA (X *G)
AES=APPeCOS (1/2.)
GO 10 16
APP=(6,/1¢82-8,/Xes3eSIN (X)) *SINK(X®G/2.) /SINH (X*G)
ASE=APPCOS(1/2.)
GO TO 16
AER=0.0
APP=0.0
GO TO 16
APF=(6,/%%02-7, /X0e3eSIN (X))~ (1.-TANH (X¢G/2.) /TANA
(X*G)) sCOSH(X®53/2.)
AEE=APFOCOS (1/2.)
GO 10 16
APF=2 (=8,/X002+16,/18036STY (X)) ¢ (1.~TANH (18G/2.) /TAN
R(X*G)) *COSH (X*G/2.)
AZE=APPOCO3 (1/2.
GO 10 16
AEE= (2./X%62¢ (2, /X-8, /T003) ¢SIY (X)) ¢ (1.~ TANM (X°G /2.
) /JTAYH (20C)) ¢CUSH (X9G/2.) *COS (£/2.)¢ (1./B=2./B0e]) SIY
(B) *COSH (B*G) /CISA (2. ¢B*C)

120



0329%0
03300+
03310+
03320
03330
03340
03350
031360
03370
03380
03390
03400
03310
03820C
¥3430C
03440cC
33450C
03460C
33470¢C
03380
33890
33391
03500¢
03510C
03520c¢
03530C
03570C
03580C
03590C
03600C
036a0C
03650C
03660C
03670C
03680C
03690C
83700
03710
03720
03730
03740
03750
03760
03770
03780
03790
03800
03810
03820+
038130
03840
03850
03860
03870
03880+
03890
03900
03910
03920
03910
039400

16
20

/3
DT/DI=0 @/ ccccecaa- -—-

10

ORIG™ &%
OF PCCi

T S
Qi iy

IPP-(2./!"20(2./1-8./x0°3)‘SI!(X))‘(1.-?133(!‘6/2.
)/rnnu(x-c))-cosa(x-c/z.)0(1./a-z./atos)-sxu(a)/cosu(
2.%8%G)
GO TO 16
APYau./Bee3eS IV (B) /COSH (2. sBeG)
AZE=APPSCOSH (B+G)
GO 70 16
l!!‘2.‘DY“2/3“3‘Stl(E)‘(1.-C0$H(B/G)/Cosl(z.'B/G))
Arr-z.-:rooz/scoJ-sru(c)-(1.-1./cosu(z.-a-c))
AB (I) sAS(I) +AT2
AP (X)=AP(I) ¢AFP
RET OBV
END
[ X ] ....‘.‘.....t.l‘“.‘.“‘.‘...“.'....‘.......‘.“‘
PIND THE COEPFICIENTS POR ZLIMENT LGHT
AD(I) (AG(T) 24 (I) 23D AI(I) A32 THE CCSPPICIENTS
OF POINTS WiIZH SURROUYD POINTS P,Q1,C2 AND Q3
RESPECTIVSLY.
.‘.‘.“........‘......'...‘...‘...“‘...‘..........“
SUBROUTINZ CIZP 4 (DX,DY,5,AL,AG,AH,a1)
DIRENSICH AD(J),AG(Y),AH(9),AL(9)
PI=3,141592654

/%

/3 Q2
/: Q3

SRIL177777772757727777707775°
DT/DY=0

DO 10 I21,9
AD(I)=0.0

AG (I)=0.0

AH(I)=0.0
AI(I)+0.0

Lo 20 1r=1,9

DO 20 J9=1,25

B=(PI/2,)*J

Ke2e3-

X=(PI/2.) K

Go T0(1,2,3,4,5,6,7,9,9) ,1
xun-(z./x--zo(2./:-3./1--3)-3:N(X))ouccsn(xoc/z.)/co

sn(x‘c)ocosu(z/(2.°ﬁ))/cosx(x/s))-cor(x/zq
Acc-(z./xooz»(:./x-e./!--J)-srw(x))o(Ccsn(z-G/Z.)/co

SH(X®G) ¢COS (X/1.) /CISH (X/3))

Aun-(z./x'-zo(:./x-a./xo-z)-sxw(x))o(:cS(x/z.)/cosa(
X‘G)OCOSH(Z/(Z.‘G))/COSH(!/G))

III-(Z./X°'20(2./!-9./!‘01)~SIS(X))‘(1./COSU(!‘G)01.

/COSA(2/C))

Go T0 17
Ann-(-e./xvozo16./x'closxn(x);ocosu¢1/(2.06))/Cos
#(X/G)*C05 (x/2.)
lGG’(‘U./l"Zv16./!"3051!(t))'CCS(!/Z.)/COSH(!/G)
ANB'(-8./!‘02016./100108IN(!))OCOSHQX/(Z.'G))/COS
8(x/G)

121




039590
03960
03970 3
03980
03990
048000
04010
08020 8
08030
04040
04050
03060
04070 5
04080
08090
04100
0a110
08120 6
04130
03140
08150
08160
03170 7
03180
03190
04200
08210
04220 8
04230
08240
08250
04260
08270 9
03280
04290
041300
08310
083200
08330 17
083180
08350
08360 20
08370
08380

lII-(-8./!"2016./!“3'513(!))/COSH(X/G)
GO0 10 17
III-(6./!0'2-9./XOOJ‘SIN(X))/COSB(X/G)
AdHs AII®CO3H(2/(2.%G))

AGG=s AI1®COS (X/2.)

ADD= AHH®COS (X/2.)

GO TO 17

ADDs=(C.0

AGG=0,0

AHH=0,0

AII=0,.0

Go 10 17

ADL=0.0

AGG=0,C

AAH=20,0

AII=0.0

GO TO V7

ADD=0.0

AGG=0,0

IHEIO.O

AII=0,0

Go 10 17
AII=(6,/X*%2-P, /Xee3eSTN (X)) /COSH(X*G)
AGGs ATISCOCH (1*3/2.)

ARH=ATI®*COS (X/2.)

ADD=AGG®C0S (X/2.)

Go TO 17
AII=(-8./X®e2+416./Xe83eST1 (X)) /COSH (2¢G)
AGG=AII®COSR(X®G/2.)

AHB=AII®*COS(X/2.)

ADC=AGG*COS (X/2.)

GO 10 17

ACC=8.8DIee2/tesJeSIN(X) *(1.-COSH(X/(2.*G)) /COSH
(X/G)) sCOS (X/2.)

AILI=8.¢Dree2/7cs 38SIN(X)*(1,-1,./COSH(1/G))
AGG=AII®COS(x/2.)
AHB=8,eDXes2/1es3eSIN (X)* (1,-COSA(X/{Z.%G))/COSH
{(X/G))

AD(I)=AD(I) #ATD

AG (T)=AG (1) +: GG

AR(I)=AH(I) +A8H

AL(I)=AI(I)AIX

RETORYN

END




et e e s et e AN

00100C
00110C
00120C
00130C
00140C
00150
00160¢
00170
00180+
00190
00200C
0021¢C
002208
00230C
002u0C
00250C
00260C
00270C
00280C
00290
00300
00310
20320
90330¢
90340+
00150¢
201360
00370
00380
001390
30400
30410
00420
004130
00440C
004 S0C
00860C
o0470C
004a80C
00490C
00500
00510
00520
00530
00540
00550
00560
00570
00580
00590
00600
00610
00620
006130
00640
00650C
00660C
00670C
00680C
00690C
00700

e,

ORICINL BLD 0

s b

OF POCR QUALIT

APPENDIX B

THE FA SOLUTION FOR LAPLACE EQUATION
WITH COMPLEX GEOMETRY

oo.tooooooooo-ococo.ao.oooooooooo"noooo.oo.oo
PINITE ANALYTIC SOLUTION OF TH2 LAPLACE

POR COMPLEX GIONMZITRY OF HEAT TRANSFEF OR HEAT
POTEZNTIAL PLOW WITR STEP OR CCUTRUCTICN.
ooo.oooottuacoovo‘o-otc‘.oot.oc---.nanouoot..o
PROGRAN ??C(IK?U?,OGTPDT.OUHZAT.Tl?!ﬁ'INPDT
.TA?S6'OUT?UT:T%PZB'OUH!IY)

123

DI MEZNSIOR PIOLD(25),PIN!2(2S),PIOLDP(ES).PIIB'P(25

),11(25),13(25),13(25),10(25),BCLD(ZS),HOLDP(ZS)
ITER=0

L L ] “.‘........".“..“...‘......‘O.‘O......‘.....“

INPOUT DATAS

1,Y1,X2,72,%X3 AND Y3 ARE DI®ZNSIONS OF THE PROBLEN,
¥ IS TRAE NUMBER 3P POINTS ASC THIS NOUMBER AAS TO BE
ODD NUMBZR, IT2AX IS TRZ MAXZISUM NUDBEZR OF ITERATION

. IK IS THT KUrFB:ZIR OF FOURIER'S SERIES TERES AND

IX SHOOLD BZ PIRE THAN 100.
£pS IS A CONTRCL POR CONVIR UZNCY.

sees080CE ‘l.l.‘.‘...‘.0‘33"‘..‘0“0 0908080088880 0888

‘3]:‘!1,Y‘,x:,!:,xJ,YJ,N,ITHX!,IK,EPS
PRINT 998
PRINT 997,11,Y1,12,12,x3,!3,3,ITHAX.IK,5P5
997 PORHIT(//3x,‘x1",?u.2.3x.‘!‘=',f“.2/31,
012-‘,!0.2,31,'!2=-.Pu.2/3X.°13=‘,rn.2,31.'Y3-0
.P“.Z/JX.‘H = ‘.IJ,3!.‘115!!3‘.13/3!,'IK '.,I“‘
3x,e2PS=e,P10.6//)
998 FPOP®AT(///3X,*INPUT DATAS ARE PCLLOING ¢//)
Kni=N=1
FLOATN=N-1
DY=12/FLOATN
IP 1211-DY
IP2=2X2-CY
po 101 I=1,N
PLOATI=I-1
.......'.‘..‘.....‘..‘........“.“‘.‘.‘.‘...‘
PIRST GUESS SHCILD BE MADT TO START 1R2
ITSRATION. PIOLD(I) ,FIOLD? (L) Al THE
TENPRATUPZ OY THZ LINZ psTvLIN THEZ PART
e2 AND PART 2,3 FISPZCTIVILY.
‘......‘.‘..-‘....‘.‘......‘.‘.......‘...‘.‘..
rIOLD(I)'1./Y3‘FL3\TI‘DY
101 rICLCP(I)=FIOLD(JI)
105 TITER=ITZIDe}
po 708 Ix2,%%1
HOLD (I) =FXIOLD (I}
704 AOLCP (1)=FIOLIP (I)
TA (1) =C.0
TR (1)=0.0
TC (1) =0.0
TD (1)=0.0
TB (M) =1.0
TC(N)=1.0
po 104 I=2,:%)Y
PLCATI=I-}
TIsFLOATICOY
..‘......‘......“..“‘....'.‘....‘.........‘.
THE ANALYTIC 5~LUTION FOR PANT 2 ARD THIW
PIuD THE TZ-NP2NUURE AT CPRTAIN POLUNTIE (X=DTY,
‘-DY'ZDY".OQQ(“‘)DY)I

.....".‘.‘......‘lll..‘l‘.“‘...‘.O‘....‘...‘

CALL 110(5,5,2!,:Y,N,YI,D!.FXOLD.PICICP.!2.72.T!D

Ty Yo



r“~ Loandb LA A L La il LAl

00710+
00720C
00730C
00740C
00750¢C
00760
00770+
00780
00790
00800
00810
000820
00830C
oossoC
30850C
00860C
00870C
00880
00890«
00900C
00910C
00920C
00930C
00940C
00950
00960+
00970
009860
00985
01000C
01010C
01020C
01030¢C
01040
01050+
01060
G1070¢
01080
01090
01100
01110
01120+
011130
01120
01150
01160
01170
01180«
01190
01200
01210
01220+
01230
01240
01250C
01260C
01270C
01280C
01290¢C
01300C
01310¢C

104

1C2

103
705

706

200

201

203

202

e T T e DA A R A - A A e e

PAOR S

CraEiias v

3¢ PGOR QUALITY

+DELX,C2ELY)

S50000008 880883888088t EETNINIVB000¢02008C08
PIND THE TEXDPRATORE AT CIRTAIY POINTS IN
PIBT 2 ,(X‘!Z-DY.Y'DY,ZDY....... (,'1)DY).

(TR ISR R R RIS RSN AR IR RSN R ER R 22 02 2 2 2 J
CALL TTB(S5,.S5S,IK,0T,N,Y'I,XP2,PIOLD,PIOLDP,X2,Y2,TCC
+CELX,DELY)

TB (I) =TBB

TC (I)=TCC

DO 102 I=2,N

PLCATI=I-1

YI=FLOATI®DY

SEVCSEETECCSSCTESINIBSICISS SIS ISOSOESLESS
THE ANALYTIC SOLUTION FOR PART 1 ASND PIND
THE TS“PRATURE AT CEZRTAIN POINTS (X=X1-DTY,
Y=*DY,2DY, 0000 (N=1)0Y) .

CSCS0S SIS SLSCECEEICEEENOESE TR PNRE000C38200088S

CALL TTA(S.5,IX,DY,N,YI,XP1,PICLD,X1,11,Y2,TAA

+DELY,CELY)

SC000800CISECSTEIRSEATEREIBEESI9C98080C000808 8
THE ANALYTIC SOLUTION POR PART 3 AND PIND
THE TEMPRATURE AT CZ2TAIN POINTS (X=(Y,Y=DTY,
22!.0:..0'(3‘1) DY).

009808808808 SELISETTESABEERTI2 V0000009200008

CALL TTC(S,S,IK,DY,N,T7I,DY,PIOLLP,X2,13,Y2,TDD

+OILX,DELY)

TA(I)=TAA

TD (I) =130

DO 103 I=2,%M1

0800000 SS2SCLCSSUISLRTICEEENSEO8SES000088 08008088
USING THE NIWMZ-POINT PINITE UIFPIRINTIAL FOREDLA
TO CONTINOZ THE ITZRATICY.

[ IEI2STIT IR RRER RN ANR AT ARS RIN R AR 1 22 R 2 2 2 2 2

PINBU(I)=(TA(I41)¢TA{I-1)¢T3(I=1)+TE(I+1))*, 0446854

13¢ (TA{I) *PIOLD(I¢1)+TR(I)+FICLD({I~-"))*0,203531459

PINBRP (I) 3 (TC(I¢1)+TC(I~1)¢TD(Le1)¢T0(I-1)) ¢0.0046854

13¢(TC(I) *PIOLD?(I+1) «TC (1) ¢PiOLLP (I-1))+0.20351459

PIOLD (I) =PINZJ(I)

PICLDP(I)=PINCWP(I)

Lo 7CS 1=2,%m1

IP (ABS (HOLC(I)~FIOLD(I)).LT.2PS.AYD.ABS(HOLLDP (I)

-PIOLDP(I)) .LT.ZDS) GO TO0 706

IP(ITTR.LT.IT®AX) GO TO 10§

PRINT 290,ITzIX

FORRMAT (3X,*ITZR=%,I8///)

PRINT 201

PORMAT (3X,*TU2 DISTRIBUTION OF THE TENPRATUREe,

& O THT LIN"®/3Y,*B2TWEZY PLAT 1 AN PART 2 IS%))

PRINT 202, (PIOLD(IL),I=1,¥)

PRINT 2013

FORMAT (JX,*TH2 DISTRIBO™ION OF THE TINPRATUPCe

,*0N TH2 LINT®/3Z,*BITHEZY PAAT 2 ANL 3 ISe//)

PRINT 202, (FIOLTD(I),I=1,%)

PORTAT(IX,11(P10,6) //)

00008000 C¢0CECO80COFSisOORPITEIOPIBOISISOIOSCSOBTOECSOSOOSS
THE CALTULATION IS DQNZ. YOV YCO WIIL B2 ASKED
ABCUT YOUR DISIRAIJLE POINTS THAT YOC 9ISH YO
HAVEZ IT'S TTNPPATCRT AND HZIAT CCMLOCTION IV
X ANMD T DIRZICTION,

IX AND IY ARE TWO NONCER,IP YOO WANY DT/DX AND
PT/0Y JUST PUT IX=1,1Y=1,0THIRVLSZ POT SOAL




01320C
013130C

OTAZR ¥UMBER.

.‘.‘.“."..O0..‘..‘....‘..9‘.'..‘..‘..‘.‘......‘

01340 348 RZ2ADeX,Y,IX,iY,IK

91350
01360
91370
01378
01380
01390+
01800
01810
01811
01815

PRINT 1350,X,Y

X123=X1¢X2+X3

Z12sX1¢X2

IP(X.2Q.X1) GO TO 369

I? (X.LT.X1) CALL rfl(IX.I!.IK,D!,“.!,!,PIOLD,!1,!1
e12,T,DELX,D3LY)

I? (X.GT.X1.ASC.X.LT.X12) GO T0 385
IP(X.GT.X12.1?D.X.LT.X12J) GO TC 346

IPF(X.2Q.X123) GO TO 1346

IP(X.2Q.X12) GO TO 345

01416 369 CALL TTI(I!,I!,IK,D!,N.!,X,!IOLD,!1,!1,!2,T,D!LX.D!LY)

1420
01430
014840
01850+
21460
01470
01480
01490+
01500
01510¢
01520
01530
01540+
01550
01560
01570C
01580C
01590C
01600C
01610C
015§20C
01630C
01640C
01650C
01660C
01670C
01680C
31690C
01700C
01720
017130«
01740
01750
01760
01770
01780
01790
01800
0.810
01820
018130
01840
01850
01860
01870
1880
01090

345

346

350

w7
349

10

GO0 TO 1347

2= X-X1

CALL T1B(IX,IY,IK,DY,N,Y,X,PIOLD,PICLLP,X2,Y2,T,
DELX,CELY)

GO 10 347

X2 1-X12

CALL TID(IX,IY,IK,DY,Y,Y,1,PIOLDP,X),?3,12,T,CELX
.DELY)

PORMAT(3X,*TSH TEMPRATURZ AND HEAT CCX. AT®,

e PCINT X=®,F5.2,¢ AND Y=e¢,P5.2,° ARES®)

PRINT 3J49,T,CILX,0°LY

PORANT (//3X,%7=%,£10,6, 3K, *DT/DX=2e,F1C.6
,3X,eDT/0Y28,P10.6)

GO TO 348

END

S6889CSPSNSASSEBES 280 “‘....‘."."‘...“‘..‘..

ANALYTIC SOLUTION POR PART 1.
S SSCESSUSSESSTUBETE0ISOUEISSE00CRESE00EsOOBOIISES

/11 PART 1

R EEXX KN

* o0

r(Y)

Ll el ol aRa R o ol ol

B — T —————

0

SUBROUTINE T?A(IX,IY,IR,D!,!,!,x,r,xl,!1,!2.1lk
+DELX,DTLY)
DIMENSION C(25),P(ZS),CB(2S),CD(2S)
TAA*0,0
p2LX=0.0
DeLY=0.0
NP 1aNe
DO 10 I=1,NP)
CB8 (I)=0.9
CD(I)=0.0
C(1)=0.0
PI®). 141592654
po 11 J=1,uP1
DO Y1 K=1,IK
IL1s (PI/Y V) oK
IP('.22.1) GO 10 2
Iy (J.2C. ¥) GO T0 )
IP(J.EQ.NPY) GO TO &




01900
01910
01920
01930
019430
01950
01960
01970
01980
01990
02000
02010
02020
02030
020480
02050
02060
02070
02080
02090
02100
02110
02120
02130
02140
02150
02160
02170
02180
02190
02200
02210
02220
02230
02230
02250
02260
02270
02280
02290
02300
02310
02320
02330
02340
02350
02360
02370
92380
021390
02800+
028100
32420+
02830¢
02440
02450
02860
024700
02880+
02490
02500

2

3

v
. 3
- .

ORIGHAL ¥5 7
AF POGR QAR 126

JI=J/202-J
IP(3J.EQ.0) SO0 TO0 S
Al=FORAY(LZY,XLY)
B1=p0NBI(DY,XLY)
A3=POMA3 (DY, XLY)
B3=PONBI(DY,XLY)
D1=A1®CQS ((J- 1) *XL 1eCZY) ¢B1eSTY ((J=-1) *XL1eDY)
DI=AJeCOS ((J~3) *XL1eDY) ¢BISSIN((J-3)*XL1eDY)
D13=D1+D3
SCePUNCI(K,Y1,XL1,21,D13,1,Y)
IP (IX.GT.1) CBR=20,9
I?P(IY.GT.1) CCD=(C,0
IP (IX.%Q. 1) CEBxPINCYX(K,11,XL1,X1,313,X,1)
IP(IY.2Q.1) CDD=PONS2Y(R,¥1,XL1,X1,C13,2,Y)
GO TO 1
A1=PONAT (DY, XL1)
Di= A
CC=PONCC(K,Y1,%L1,X1,D1,X,Y)
IP (IX.GT. 1) CPBB20,
IP(IY.GT.1) COC=0.3
IP (IX.5Q. 1) CP®a3=70iC2X(%,71,XL1,X%,C1,X,7)
IP(IY.EQ.1) CLD=PUNCRY(R,Y1,IL1,X1,01,X,1)
GO TO 1
AJ=PONAI(DT,YLY)
B3=FO9BI(CY,ILY)
DI=A3eCOS((J-2)*XLI*DY) +B3eSIN((J-3)*XL1eDY)
CC=FONCC(X,¥1,7L!,X1,33,X,7)
IP (IX.GT.1) C3%s0.0
IP (IT.GT. 1) CiCl=0.0
IP(IX.Z0.1) CBS=PUNCEX(K,T?7,X11,21,03,1,Y)
IP(IY.EQ.1) CLO=FONCIY(K,Y?,XL1,X1,03,X,Y)
GO 10 1
CAC=XL1s (X+X1)
IF(CAC.GT.83J) CAZ2630
BZ1=XP (-CACQ)
CAP=2,eXL 1011
IP (CAP.GT.61)) CAP=630
222=EXP (~C\P)
ILPI=PI/X 1K
CA=XL1eX
DAC=ILi® (X1-X)
IP(DAD.GT.63C) DAD=630
CAA=2,eXLP1*Y
CAB=XLP1e (YeY1)
CAl=XLP1® (Y1-1)
I?P (CAL.GT.615) CAA=6130
IP (CAB.GT.61>) C.B*6130
IP(CAD.GT.61C) CiD2630
IP (CA.GT.850) Cazu%)
CC®2, /118 (= 1./ XL1e20S(FeOL) 1, /XLT1OCCS (XLYOTY)) eSIN(
IL1sY)® (SX2 (-CAM-TIN/(1.-72.) ¢i.¢Co5(X*P1)/
(ROPIOTANH (XL 10Ty ) 6STN(XLIOT) #(SINA(CA) =TANH(YLIOXY
) ®CCSH(CA)) ¢4, ¢ (ST (PI/2 oK)yl / (KePL)® (EXIP (-CAD)
~EIP (=CAB)) /(1.-2XD(=CAL)) ¢SLii(XLR1ex)
IP(IX.GT. 1) CPQ=0,0
IP(IY.GT.1) CTD=0.2
IP(IX.5Q.1) CEB=2./Y10(-COS(Ke27)¢COS(XLIeY2))e
SIN (XL10Y)® (ZT2(=CAD)¢EZ 1) /(1.~522) ¢2,9CO3(TePI)/
(KOPIOTANH(RLT®X1) ) @SIN(XLI®Y) e (CCTHICN) ~TANH (XL
eX1)OSINH (CA))oXL1od, @ (SIN(PI/2.0")) 00/ (KeD])®
(SXP(=CAD)~ZXP (=CAB)) /(1=K (-CA2))oCCS (XLP1ex) @

g



02510
02520
02530+
02540+
02550«
02560+
02570«
02580
02590
02600
02610
02620
02630
02600
02650
02660
02670
02680
02690
02700
62710
02720
02730
02740
02750
02760
02770
02780
02790
02800
02810
02820
028)30cC
02840C
028508
02860C
02870C
02880C
02890C
02900C
02910C
02920C
02910C
0294%0C
029%0C
32960C
02970¢C
32980C
32990C
33000cC
33010
03020+
030130
33040+
33090
03060
03070
03080
03090
03100
03110

5

AR

78

A 127

arns
QRIGT N v 2

OF POOR GUALITY

XLPY
IZ(I1.2Q.1) CDD=2./Y1% (-COS (K®PT)¢CCS (XL1072)) e
COS (XL1®Y) o (SXP (~LAL) =¥21) /(1.=322) ¢, °COS (FePI)
/ (RSPI®TANH (XL18X1)) ®CCS(XL1wY) oXL 10 (SINY(CA) -
TANH(XL19X 1) ®OSH (CA)) +d.® (ST (P1/2.9K)) ¢82/ (RePI)
® (2XP (~CAD) #TXP (~CAB)) /(1. ~SX P (~CAA)) ¢ ILPY
SSIN(XLP1eY)

GO T0 1
A2=PUNA2(DY,XL1T)
B2=PUNE2 (DY, XLY)
D2=A2¢COS( (J-2) *XL1eDY) ¢B2eSIN ((J-2) * XL 1¢DY)
CC=FUNCC(K,Y1,XL1,X1,D2,X,Y)

IP(IX.GT.1) COB=0.D

IP (I1.GT.1) CzC=0.0

IP(IX.EQ.1) CBB=FCNCZX(K,Y1,IL1,X1,02,X,1)
IP(1Y.8Q.1) CCI=PUNCEY(K,Y1,XL1,X1,0Z,1,7)
C(J) 2C (J) +C2

CB (J)=CB(J) +CBB

CD (J) =CD (J) +CTD

CONTING®

£O 78 I=l,N

CRT=CB(I)*P (1)

DDT=CD(I) *P (I)

CELXsDEILX ¢L=T

DELYsDELY+ZDT

TTEC(I)*® (1)

TAA=TAASTT

TAA=TAAGC (NPY)

DELXsDELX+C3(N?1)

CRLY=DELY +CD(}P1)

g2T0RN

23D
.".‘.“.‘..‘....‘....‘...‘....O...‘..'...“‘...

ANALYTIC SOLUTIOY FOR PART 2.

‘..“....‘......““...‘.‘.0'.“....‘..‘0....‘..

Te
Cepocccanas=0
s @ T
s @ ')

1 ANE 4] * o ¢ e P2(Y)
* o ¢
s 9 T
e frcvcannpal
T=0
PART 2

SUBROUTINS TTB(IX,IY,IK,DY,N,Y,X,?D,FP,X2,Y2,T
LDPLY,LELY)

DINENSION C(2%5),P(25) ,PD (25) ,FP (25) ,Ct {23) ,CL(25)
,CH(25),C5(25)

AP 1aNe |

T20.0

LELZ=0.0

L2LY=0.0

PIe), 101592653

DO 10 I=1,NP1Y

P(1)=0.0




03120
03130
03140
03150
03160
03170
03180
03190
03200
03210
03220
032230
03240
03250
03260
03270
03280
03290
03300
03310
03320
031330
03340
031350
03360
03370
03380
03390
03400
03410
03820
03430
038450
934850
03860
03870
03480
03490
03500
03510
03520
03530
33540
03550
03560
03570
03580
03590
03600
03610
03620
03630
03640
03650
03660
03670
03680
03690
03700
03710
03720

10

C3(I)=0.0
CD(I) =C.0

CE (I)=0.0
CG(I) =0.0
C(I)=0.0

DO 1 J=1,NP1Y
DO 1 K=1,IK
XL2=(P1/Y2) *

s;'..j.h.n.i:.‘-,‘ 128

K

1P (J.2Q.1) GO TO 2

Ir (J.EQ.N) G
I? (J.BC.NP1)
JJ=J/242-0
IP (JJ.£Q.0)
A1=sPUNA1(DY,
Bi=FUNE1 (LY,
A3=PUNAI(DY,
BI=FUNE3 (DY,
D14 1¢COS ((J
Di=A3eCOS ((J
D13=D1+D3
CC=PINID(Y,Y
PP=PUNCC (K, Y
IP (IX.EQ. 1)
IP(IY.%2.1)
IP (IX. 2. 1)
IF(IY.EQ.1)
IP (IX.GT. 1)
IP(IX.GT.1)
IP(IT.GT. 1)
IP(1Y.GT.1)
GO TO 6
Di=rPUNAT (DY,
CC=PONED (K, T

0 T0 3
GO TO &

GG %0 5
XL2)

XL2)

XL2)

XL2)

=1) *XL29DY) +B1eST X ((J-1) +1L2eDY)
=3) $XL2#DY) +BI#5IN ((J=-3) sXL2%DY)

2,X12,12,013,2,1Y)
2,XL2,%2,013,1,Y)
CCC=F3¥D2X(K.Y2.XL2.!2,C13,!.!)
P??=?U*DEY(K,Y2,112.X2.51J,X,Y)
CCCCSPUVCE!{K,YZ,XL2,XZ,:1J,X,Y)
PPPPSPUNCEY(K,YZ,XLZ.IZ,E\J.X,Y)
CCC=0,0

CCCZ=0.0

PE2=20,9

PPPP=( .0

LL2)
2,1L2,%2,C01,X,1)

PP-PUNCC(K.YJ,XLZ.X2,D1,X.Y)

IP?(IX.FQ.1)
IP(1Y.%Q.1)
IP(IX.25.1)
IP(IY.EQ.1)
IP(IX.GT. 1)
IP(IT.GT.1)
I? (IX.GT. 1)
IP (IY.GT.1)
GO T0 6
A3=PCYA (DY,
B3=PUNB3(CY,
D3=A2eCOS ((J
CCsPINELD (K, Y
PP=PONCS (K, Y
IP(IX.5Q.1)
IP(IY.50.1)
IP (IX.2C. 1)
IF(IY.2Q.1)
IP(IX.GT. 1)
IP(1Y.GT.1)
IP(IX.GT. 1)
IP(IT.GT.1)
GO T0 6
ILP22PI, X2k
CAA=2,eXLP2e
CAB=ILP2¢ (Y.
CAC=XLP2e (T2

CCC=?JHC!X(K,YZ,XL2,X2,B1,X.Y)
P??’PUﬂSBY(!,YE.ZL2,12,C1,I,!)
CCCC=FUHC3X(K,YZ,(L2,12,21,X,H
P?P?-FU!CE!(K,TZ,‘LZ.XZ.fl.X,T)
CCC=3.n

PrP=0.9

CCCC=0,0

PTPPx(,.0

xL2)

XL2)

=) SXL2¢DY) ¢BI*SI N ( (J~3)eX124DY)
2,%L2,€2,23,%, 1)
2,XL2,42,03,1,1)
CCC=FUNIEX(F,Y2,XL2,X2,03,X,Y)
POPaPUYIZY (K,¥2,%02,22,53,%,7,
CCCCeUNCIX (X,12,XL2,22,22,K,1)
PPPO2PUACEY (X, ¥2,X12,22,0,X,T)
CCC20.9

fPPaY,)

ccccad, 0

PPPP20.0

12
Y2)
-1)




03730
03740
03750
03760
03770+
03780
03790
03800+
03810
03820
038130
038490
03850+
03860
03870
03880
03890
03900
03910
03920
03930
33940
331950
33960
93970
33980
33990
38000
04010
020
35030
3040
24050
34060
33070
04080
08090
08092
04094
03100
04110
08120
08130
[(L R LT
04150
04160
04170C
04180C
04190C
0az00
04210+
o220
082130
Q4240
084250
04260
08270
048280
08290
04300
08310

10

. ;;\.».“;}’{'Q{,
o QY [TV
O

1P (CAA.GT.630) CAR=620

1P (CAB.GT,630) C1B=630

1P (CAD.GT.530) CAC=630

CCw4.® (SIN (Ke$DPL1/2,)) #22/ (KePI) oSIH (XLP2+X) *
(ZXP (=CAD) =EXP (=CA3)) / (1.-EXP (=CAA))

PP=0,0

IP{IX.£Q.1) CCCal, e (SIN(PI/2,*K))ee2/ (KePI)*XLP2

*COS (XLP2#X)® (EXP (~CAD) =BXP (~CAB)) /(1.~EXP (=CaA})

IP(IX.GT.1) CCT=0.0

CCCC=0.0

PPPP=0.0

IP (IX. 2Q.1) PP2=u,® (SIN(PT/2.*K)) *92/ (KePI) *XLP2

" (BXP (~CAD) #Z XD (=ZAB)) / (1.=2XP (-CaA)) SIN (XLP2°X)

IP(IY.GT.1) PPP=0.C

GO 10 6

A2=PONA2 (CY,ILl2)

B2=PUNB2(DY,XL2)

D2=A26COS ( (J-2) $XLIsLY) +B2¢ST ((J-2) *2L2%DY)

CC=PUNDD (K,Y2,XL2,%X2,D2,%,Y)

PP=PONCC(F,¥2,XL2,X2,C2,X,T)

IP(IX.EQ.1) CCC=PUMDZX(K,Y2,X12,%X2,C2,1,1)

LP(I7.£Q.1) PPP=FIMDRY(¥,72,XL2,X2,0%,%,7)

IP(IX.EQ.1) CCCTaFUNIZX(¥,12,X12,X2,02,1,71)

I? (IY.EQ0.1) PPPP=PIUCEY(X,¥2,IL2,X2,5%,X,7)

IP(IX.GT.1) CCC=0.3

IP(I1.GT.1) 2°P=0.C

IP(IX.GT.1) CCCT=0.0

IP (IY.GT.1) PPPP=0.0

P (J) =P (J) +PP

CB (3)=CE (J) +CCC

CD (J) =CD (J) +CICS

CH (J)=CR(J) +P®P

CG (J) =CG (J) +PPPP

C (J) =C (J) +CC

DO 7 J=1,N

CRLT=CB (J) *PD (J) *CD(J) #FP (J)

CHGT=CH (J) #FD (J) +35 (3} *F2 (J)

DEZLX=DELX+C2CT

DELY=DELY+CUGT

TTaC (J) *FL (J) +P (J) *PP (J)

T=TeT1

TaTeC (¥P1)

DELX=DELX+CB (¥P1)

DELY=DELY+CH(NPY)

RZTORN

END

“O‘...“O‘.‘.‘.‘.l‘.‘..‘...“.P... 18000008008
ANALYTIC SOLUTION FOR PART 3.
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SORROUTIN® TTC(IX,IY,IF,DY,N,%,%X,P,X3,73,72,1
LCELX,DELY)

DININSION C(25),?(25),CB(25),CD(25)

¥P 12N+ 1

720.0

DELX=0.0

DELY=0.0

PI=3.181592654

Lo 10 Is1,%P1

CB(I) »0.0

CD(1)=0.0

c(I)=0.0



PRI

LI

LAkl LB R TR LA

08320
08330
08340
081350
08360
08370
08380
08390
08800
caat0
08820
088130
08840
008450
4860
08870
oaapo
08890
38500
34810
98%20
045130
38540
98550
08560
0asS0
d4%80
04390
08600
08610
8620
086130
03640
086%0
03660
08670
08680
04690
08700
04710
08720
04730
08740
08750
03760
48770
0a780
04790
08800
08810
04820
088130
08840
04850
04860
04870
040880
088900
04900
049100
08920

ORIGINAL PAGY 18
OF POOR QUALITY 130

DO 11 J=t1, NP9

DO 11 K=1,IK

IL3= (PI/Y3) oK

IP(J.XQ.1) GO 10 2

IP(J.EC.¥) GO TO 23

IP(J.EQ.7P1) GO TO &

JJaJ/2e2-3

IP(JJ.EQ.O0) GO TO S

A1sPONAT(CY,XL3)

B1=PONB(DY,XL])

A3=PONA3(DY,XL])

B3=PONBI(DY,XL])
D"l"COS((J'f)'XL]‘DY)0!1‘3:"((J-1).!L3‘D')
03‘13‘C°5((J‘3)‘XL3‘DY)QBJ.SI“((J'J).XLB‘DY)
D13=D1+D3

CCIPUNDD(K,!],XLJ,13.013,1.!)

IP(IX.GT.1) C:a=0.0

IP(IY.GT.1) CDD=0,0

Ir(IX,.1Q.1) CRReYUNDEX(K,Y3,XL3,X3,212,Z,Y)
IP(IY.2Q.1) CDD=PONDEY(K,¥3,X1L3,X3,C13,X,Y)
GO To 1

D1sPONAT(DY,XL3)
CC=PONLD(K,Y3,XL3,X3,D1,X,Y)

IP(IX.GT.1) CBB=0,J

IP(IY.GT. 1) CCC=0.9

IP(IX.EQ.) CRBa2PUNDEX(X,Y3,213,X3,01,1,1)
IP(IY.:Q. 1) CCO=PUIDEY(K,Y3,XL3,X3,C1,X,Y)
GO 10 1

AI=FUNAI(CY,XLI)

B3=PONB3I(DY,XL3)
DJ'I)‘COS((J'J)‘!Ll‘DY)OBJ‘SXH((J‘J).!LJ‘D')
CCePUNDD(K,Y¥3,XL3,X3,03,X,Y)

1P (IX.GT. 1) CEBa0. s

IP(IY.GT.1) CCD=0Q.3

IP(IX.2%Q.1) CeS=FONL*X(K,73,XL3,X3,22,2,7)
IP(IY.EQ.1) CDD=PyUiDEY(K,¥3,213,X3,C3,X,Y)
GO TO 1

CAC=ILl®(X+X3)

IP (CAC.GT.630) CAC=6130

CAPsILI®*X 32,0

IP(CAP.GT.63C) CaP=630

BZ 1a2%P (-CAJ)

BZ2=XXP (-CAP)

ILP3=PI/X 3K

DAC=XL3® (X3-X)

IP(DAD.GT.63C) DAD=630

CAD=XILP3e (13-7)

CAB=XLP 3 (Y3+Y)

CAl=2,eXLPleY)

IP(CAD.GT.630) CAD=630

IP (CAB.GT.61C) CaB=6130

IP(CARA.GT.63u) CAA=610

CA=XLl3ex

IP(CA.GT.450) CA=450
CC"?./(YJ‘T\NK(IL]“]))‘(1./!L]‘COS(!L]‘Y2)°1./‘L
JeCOS(KePI)) e SIH(LLIoY) € (SINH (CA)=TANE(XLIex]) @
cosu (Cr))
-2.‘COS(K°PI)/(K°PI)OSI!(ILIOY)‘(E!P(-DAD)
-!11)/(!.-222)00.0(SI!(P[/2.OK))002031N(!LP1
‘l)/(K‘PI)'(:X?(-:AD)-!IP(-CAB))/(1.-!!?(-Cll))
IP(IX.GT.1) CeB=0,V




08930
08940
08950«
00960¢
34970
04980«
04990
05000«
05010¢
05020+
05030¢
08040
05050
05060
05070
05980
05090
05100
05110
9s120
05130
05140
05150
05160
05170
05180
05190
05200
05210
05220
05230
05280
05250
05260
0%270
05280C
05290¢C
05300C
05310
05320
05330+
05300
05350
05360
05370
05380
05390
05800
0%4q10
05820
054130«
05840
05450
05860
03870
05680¢
05890
33300
35810
)ss20
955300

11

ORIGINAL |, . 131

OF POOR QUA.itY

IP(IY.GT. 1) CDD=0,0
IP(IX.2Q.1) C2Bw=2./(T3¢TANH(ILI®*X]))® (COS{(XL3eY2)
=COS (K®PI))*SIN (XLJeY) ¢ (COSH(CA)=TATH(XLI®X3) sSIUN
(CA)) ~2.9%COS(Ke2Y) /(X*PL)®SIN (XLIeT) e (EXP(-CAL) 2
1)/ (1a=~222)0XL34u.®(SIN(PL/Z.9X)) 90 eCOS(ILPIoX)®
ILPI/(KePT) ¢ (SXP (~CAD) =®XP (=CAB))/ (1.=2XP (=CAN))
IP(IV.EQ. 1) CCCw=2./(Y3¢TAYH(XLI®(3))®(20S(XLIeY2) -
COS(KSPI))*COS(XLI®Y)® (SINH (CA)=TANY(XLIeX]) *COSH (CA)
) ~2.8CCS (PI*K)/ (R8BI} »COS (XL oY) eXL 2o (TXP (~DAD)-221)/
(1.-822) ¢4, ¢ (SIN(PI/2.9K)) #82eSIN(XLRJIX) /{DI*K) ¢XLP]
® (PXP (=CAC) ¢ZXP (=CAB)) /(1.-2XP (~CAA))
Go T0 1
A2=PONA2(DY,XL])
B2=P0 NP2 (LY, XL))
D2=A29COS ((J-2) *XL3eDY) +B2eSIN((J=-2)eXL3eDY)
CC=PUNCC (K,73,XL3,X3,02,X,1)
I? (IX.GT.1) CDB=Q,Q
IP(IY.GT.1) CLD=0.0
IP(IX.ZQ.1) CRB=PONDEX (XK,Y3,X13,%3,02,X,Y)
IP (IY.2Q.1) CCO=PONDRY(K,Y3,XL3,X3,04,1,1)
CB (J) =CB (J) +C 98
CD (J) =CD (J) *CLD
C (J) =C (J) *+CC
DO 7 J=1,N
DET=CD (J) e? (J)
DDT=CL (J)*? (J)
DELX=DELI®DET
DELYsDELYeDCOT
TTsC{J) *F (J)
TeTeTT
T=TeC (NP1)
DELXI=CDELXeCB(VPY)
DELY=DELYSCD(NP1)
BETURN
END
(IS T IR IR TR YN T 0000838008000 0¢00¢0000008SSOOSES
ALL POSCTIONS ARE LIST?D P®LON,
008000000 C 0L 0008000800000 IOICOOIOORESIBESESSTE
PONCTIOY PINAI(TY,X)
PURRINCOS (2.°X%Y) / {Kee)eY®e2) ¢ (SIN(Z.%18Y)) /(2.0 TeL0e2D)
*1./X-1,/(Xes Je o)
RETORN
END
PONCTICN PONA2(Y,X)
FUNA22=2,2(C0S(2.910Y)) /(X003 eYew2) -2, ¢(SIN(2.9TeY))/(Xee2
‘!)02-/(!“3'Y“N
RETURN
EsC
PONCTION POMAJ(Y,I) .
PUBAI® (-1, /X¢ 1,/ (Xe0)orea2)) sC5S(2,0207) 01,5/ (Xee2sY)
OSIN(2.%(°T)-1,/(Xee)eree);
RETURN
XD
PORCTICY PUNDI(Y,X)
PONB1=,5/(1e002) eT0S(2.9XeY) -1,/ (10020 ee)) oSTN (2.01°T)
¢1,.5/ (YeXes2)
RZTORN
1 § 1]
PUNCTION POND2(Y,X)
PUNB2®-2./ (YoXeeJ) oCOS (2. 0X01) 02, /(10020 0e))eSIy (2, 080)
)=2./(102002)




35580
35550
05560
05570
95580+
05590
05600
05610
05620
05630
05640
05650
05660
05670
05680
05690
05700
05710+«
05720
05730
05740
05750
05760
05770
05780+«
05790
05800
05810
05820
058130
05840
05850
05860
05870
05880
05890
05900
05910
5920
05930
05940
05950
05960
05970
05980
05990
06000
86010
06020
36030
6040+
36050
36060
06070
36080
96090
36100
06110+
36120
06130
06140
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BETURN

END

PUNCTION PURE3(Y,X)
PUNBI=1.5/(Y*Xv®2) s20S(2.620Y)+ (1./2X-1,/ (Yoe29X8e])) ®
SIN(2.%X¢Y) +.5/ (Ys2es2)

RZTURN

END

PUNCTION PONCC (K,Y1,%L,21,0,X,1)
CAC=XL® (X+X1)

IP (CAC.GT.63C) CAZ2630
CAP=XLeX1e2,0

IP (CAP.GT.639) CaAP=630

2Z1=TXP (-CAC)

22 2=BXP (~CAP)

CAC=XL® (£1-X)

IP(CAD.GT.63C) CLD=620
PUNCC=2,/Y1¢CSIN(ILeY)  (EXP (-CAD) -2Z 1)
/(1.-222)

RETORN

END

PONCTICN PONDC(K,?1,XL,X1,D,X,Y)
CA=ILeX

IP (CA.GT.450) CA=4SO
PUNDD2-2./(T1#TANH (XLoX1)) eD® (SINH (CA) ~TANH (ZLeX1) ®
COSH(CA)) *SIN (XLeY)

BETORN .

ENC

PUNCTION POUTCSX (K, Y1,XL,X1,D0,1,1)
CACEXLe (X eX1)

IP (CAC.GT.630) ZAZ 2630
CAP=XLeX1e2,;

IP(CAP.GT.631) CAP2630

CAC=XLe® (X1-Y)

IP(CAD.GT.53() CADC=630

EZ1=EXP (=CAC)

EZ2sEXP (-CA?)
PUNCEX=2.,/Y1# CeSIN (XLeY) ® (EXP (~CAD) #EZ 1) XL
/7(1.-222)

RETUBN

END

PORCTICY FOYCSY(K,Y1,XL,X9,D,X,T)
CACsXL® (XeX1}

IP (CAC.GT.637) CAC=€30
CAP=YLex122.0

IP (CAP.GT.637) CAP=630

CAD=XL® (X1-«)

IP (CAD.GT.63J0) CAD=630

EZ122XP (=CAC)

PZ2=EXD (~CAP)
PUNCEY=2./Y19D6COS (XL*Y) *TLe (CXP(-CAL) -221)/
(1.-£22) :

RETORN

ENC

PUNCTION PUNOEX (K, Y1,XL,X1,D0,X,1)
CA=XLeX

IP(CA.GT.4SC) CA=3SO
PONCEX==2./(f 1eTANY (XLOX 1)) ®D® (COSH(CA) -TANH (ILeX1)
*SINH (CA)) SXLeSIN(XLeY)

RETORR

£wD

PONCTICN PUMDZY (F,YV,IL,X1,D,X,T)




FRRE.

133
ORIGINAL PAGL 13
OF POOR QUALITY.

- 06150 CA=XL®X

= - 06150 I® (CA.GT,350) CA=u450

4 06170 PUNDEY=-2./(Y18TANH (ILeX1)) *D= (SINA(CA) -TANR (XLext) s
06180¢ COSR (CA)) *COS (XLeY) *IL
06190 RETORY

06200 BERD
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PART 111

FINITE ANALYTIC NUMERICAL SoLUTION OF Two-DIMENSIONAL
NAVIER-STOKES EQUATIONS IN PRIMITIVE VARIABLES




B
l

ABSTRACT

A numerical scheme called the 'Finite Analytic Method' is used

L

to solve the two dimensional Navier-Stokes equations. The basic idea of
this method, which was developed in the last “hree years,is to obtain lo-
cal analytic solutions and use them in the numerical solution of any

partial differential equation, linear or non-linear. The flow region is

Navier-Stokes equations are linearized and an analytical solution obtained.

}

subdivided into a number of small rectangular subregions, in which the
When the local analytic solution is evaluated at an interior point of an

‘ element a linear algebraic equatior. is obtained relating the interior

nodal value with the neighboring nodal values. The local finite analy-

tic solutions for all elements are overlapped to cover the entire flow
region. While the behavior of the non-linearity of the Navier-Stokes
equations is preserved, a set of linear algebraic equations result from

the analytic solutions. This set of linear algebraic equations is then

solved iteratively to provide the numerical solution to the total prob-

lem,
A general 9-point Finite Analytic (FA) formula is developed for the
Navier-Stokes equation in a finite element. The Navier-Stokes eauatiors

are formulated using the primitive variables. A new iterative scheme

L B |

which solves the continuity equation, Poisson pressurc equation and the
momentum equations (i.e., X- and y-momentum equations) for the

three primitive variables is devised. I'hc FA numerical solution

iil

PREC.LING PALL ELANK NOT FILMED




is first obtained for stagnation point flow and a comparison with the
exact solution is made. Then the formula is used to obtain the numerical
solution for a flat plate-wake combined problem and also for a square
driven cavity flow. The results are obtained for Reynolds numbers 100,
400, and 800.

It is shown from the above example that the FA numerical solution
converges rapidly and the FA method gives accurate and stable numeri-

cal solution.

v
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NOMENCLATURE

A,B Linearized convective coefficients in the momentum
equations
a,b,c Coefficients of polynomials representing boundary conditions

3353500585 Coefficients of second degree polynomial in x and in y

An(x) Function of x
Bm(Y) Function of y :
Cn Constants; also coefficients of 9-point FA formulae
Cj Fourier constants
Dn Constants 5
D(y) Function of y ;
D Dilation %
;

E Element j
En’En Integrals; n = 1,2,3 E
Fn’ﬁn Integrals; n = 1,2,3 %
fn Function representing boundary condition
f(x,y) Function of x and y representing the nonhomogeneous term j

in Poisson equation j
G Nonhomogeneous term of an elliptic partial differential

equation
G Integrals; n = 1,2,3 |
h Grid size in x-direction (= Ax) ?
I Integral }
i,j Nodes in the x,y directions




IMAX,JMAX  Maximum values of nodes 1i,j

k
L(¢)

vaV

X,Y
X,y
X(x)
Y(x)

Grid size in y-direction (= ay)
Operator of ¢

Reference length scale

Dummy variables in series summation
Pressure

Dimensionless pressure

Function of A,B and eigenvalue

Flow region

Reynolds number

Velocity in x-direction

Reference velocity scale
Nondimensional velocity in x-direction
Velocity in transformed coordinates
Average velocity in x-direction
Velocity in y-direction

Nondimensional velocity in y-direction
Average v velocity in y-direction
Cartesian coordinate system
Dimensionless Cartesian coordinate system
Function of x

Function of y

Greek Symbols

P

%

Density of fluid
Viscosity of fluid

Eigen values

xi




Kinematic viscosity of fluid

AR LR IR RN G AR L
<

m Eigen values

xl,xm,xn Bigen Values

v? Laplacian

¥ Stream function

Subscripts

a,b Parts of total solution

E,S,N,N East, south, north and west boundaries in an element

i,j Nodes in the X,y directions

NE North-east (similarly for Nw, SE, SW, NC, sC, EC, WC)
P Interior node

X,y Derivatives in X,y

0 Node on the wall

1,2 Parts of total solution

1,2 First, second nodes closest to the boundary of the

total region




CHAPTER 1

INTRODUCTION

The Navier-Stokes equations are a unique set of equations in the sense

that only a handful of exact solutions of these equations are available.
This is mainly due to the non-linearity of the equations and the coupling
of variables with partial differential equations of higher order. In
addition, it is often required to be solved for complex geometry and
boundary conditions. Therefore, the numerical solutions of the Navier-
Stokes equations governing the flow of a viscous imcompressible fluid
have been the subject of many studies during the last few decades. In
case of two dimensional flow, there are two ways of formulating these
equations, namely, the vorticity-streamfunction formulation and the
primitive variable (p,u,v) approach. For a two dimensional flow,

there are two coupled governing equations, one linear and one non-linear
(or quasi-linear) to be solved using the vorticity-streamfunction ap-
proach and three coupled equations, one linear and two non-linear

(or quasi-linear),to be solved using the primitive variable method.

In the past, many investigators had solved Navier-Stokes equations
numerically with the vorticity-streamfunction formulation for two
dimensional incompressible laminar flows. The obvious advantage for
this choice was that there are only two coupled equations for vor-
ticity and streamfunction to be solved. The third variable, namely

pressure, can be solved afterwards. This formulation, however, has
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disadvantage in that it is not easily extendable to turbulent flows and

three dimensional flow applications. Another disadvantage with this
method is that there 1s difficulty in specifying the vorticity boundary
condition. With this method of calculation, it is possible to obtain
the velocities from the stream function. The pressure distribution is
calculated once the velocity is known. The primitive variable approach,
on the other hand, has more unknowns and equations to be solved simul-
taneously. The difficulties in solving primitive variable approach
numerically are first the conservation of mass cannot be easily satis-
fied, and second the numerical solution is relatively unstable. There-
fore, it requires various schemes to stabilize the numerical solution,
However, it is preferred over the vorticity-streamfunction method as
the pressure and velocity variables have more practical value than vor-
ticity or streamfunction. What is more important, the primitive
variable approach can be extended to three dimensional laminar or tur-
bulent flow.

In the present work, the recently developed finite analytic method [1]

is employed for solving Navier-Stokes equations formulated in primative varia-

bles. Before introducing this method, a brief review of other numeri-
cal schemes is done. One of the most widely used method is the finite
difference scheme. In this scheme either a forward difference or a back-
ward difference or a central difference formula is used to replace a

derivative in the governing equation. Of the three different formulae,

the central difference formula has a better accuracy and is preferred over

the other two. However, it cannot be used near the boundary as an

extra node has to he located outside the boundary of the flow. It is
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also found that the use of the central difference formula for convective
term for high Reynolds number flow may develop numerical instability [2].
This difficulty is partly overcome by introducing the upward (or upwind)
differencing method which shifts the difference scheme toward the up-
stream. The upwind difference scheme, however, produces large numeri-
cal diffusion and must be made judiciously at a given Reynolds number.

Another method widely used in the calculation of Navier-Stokes
equations is the finite element method. This method considers an approxi-
mate function which is often a polynomial of low degree in a small ele-
ment of the flow. However, the approximate functions in general cannot
satisfy the governing equation exactly. The approximate functions
are made to satisfy the governing equation in an integral sense by the
weighted residue method or variational principle. The integral form
results in algebraic equations which are then solved iteratively. This
method seems to produce more stable results than the finite difference
but it is not problem free. Problems of accuracy and stability still
remain, particularly when the flow of high Reynolds number is con-
sidered.

In the present study, the method of numerical computation used is
a method recently developed by Li and Chen [1]. This method is called
the Finite Analytic (FA) method. In this method an analytic solution
is obtained in each element of the flow region which is then evaluated
at the interior node. This results in a set of algebraic equations
.which is then solved iteratively by any of the iterative schemes avail-
able. It was shown by Chen and Naseri and Li [2] that the Finite Analy-

tic method is more accurate and stable than thc other numerical mcthods.

e e & s e itk e



The FA method will be used to solve the Navier-Stokes equations for-
mulated in the primitive variables of u, v and P.

In Chapter 2, the basic principle of the FA method is described.
In Chapter 3, the solution of primitive variables for the Navier-Stokes
equations js obtained by the FA method. The flow chart and the
method of computation for the numerical solutions are given in
Chapter 4. Then in Chapter S, a simple case of stagnation flow which
has an exact solution is considered as an example to verify the
FA solutions obtained in Chapter 3. In Chapters 6 and 7, this FA method
is used to obtain solutions for flow over a flat plate and in a cavity.
The detailed derivations of the solutions in Chapter 3 are given in

1 Appendices A, B, and C. The computer program is given in Appendix D.
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CHAPTER 2

PRINCIPLE OF THE FINITE ANALYTIC METHOD

In the Finite Analytic (FA) method of solution, the total flow
region R under consideration (fig. 2.1) is divided into a number of small
rectangular or square subregions calied elements. In each of these
elements, the partial differential equation (PDE) governing the flow
is solved analytically. If the PDE is non-linear, it is linearized in
each of the small elements and analytical solutions are obtained in
those small elements. The local analytic solution is then evaluated
at an interior node and the FA solution is written in the form of an
algebraic equation relating the evaluated, interior nodal value tO
its neighboring nodal points. By grouping these FA solutions of all
the elements which overlap to cover the entire flow region as shown in
dashed line in fig. 2.2, a system of linear algebraic equations is ob-
tained. These equations are then solved iteratively to provide the
numerical solution in the total flow region R.

As an example, a general elliptic PDE L(¢) =G
is considered where L is any linear or non-linear operator. When the
boundary conditions are properly specified, the problem is well posed.
If the entire problem had an analytic solution, a numerical method of
solution would have been unnecessary. However, for most engineering
problems, due to the non-linearity of the equations or the complexity of

the geometries and boundary conditions, analytic solutions carnot be
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obtained. Therefore, numerical techniques are used to solve these
problems.

In the FA method, the geometry whether complex or simple is broken
into a number of small elements and the PDE is solved analytically in
these small elements. As shown in fig. 2.1, the region R is sutdivided
into smaller regions or elements by passing horizontal and vertical
lines through the region. These lines intersect at points (i,j) where
i= 1,2,3,...,IMAX and j = 1,2,3,...,JMAX. To find the solution at any
node (i,j), a region enclosed by the eight nodes (i+1,j+1), (i+l1,j),
(i+1,j-1), (i,j-1), (i-1,j-1), (i-1,j), (i-1,j+1) and (i,j+1) is con-
sidered. These notations for the nodes are abbreviated as NE (north-
east), EC (east-central), SE (south-east), SC (south-central), SW (south-
west), WC (west-central), NW (north-west) and NC (north-central), re-
spectively.

The problem is now reduced to one having many finite elements where
analytic solutions are sought. However, even after breaking up the
complex geometry of region R into small elements, the analytic solution
may still be difficult to obtain as is the case with non-linear PDE
like the Navier-Stokes equations. In this situation, the non-linear
terms of the equation are locally linearized in each of the elements.
For example, the non-linear convective terms in the N-S equation can be
locally linearized by taking the convective velocity components as an
averaged velocity of the local elements. Since the local linearization
is applied only to a small finite region, the overall non-linear ef-

fect is still preserved by changing the convective velocity in each

element.
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Now, consider a local element E as shown in fig. 2.2 and let the

linearized PDE to be solved in this element be L(¢) = G. The analytic

solution when obtained is a function of the boundary conditions of this f

element. Therefore,

o = o[f(x), £,(x), fg(0), £,(), x, ¥, b, Kk, C], (2.1

where fN(x), fs(x), fE(y) and fw(y) are the boundary conditions on the
northern, southern, eastern and western sides of the element, x and y
are the independent variables, h and k are the grid sizes in the x and

y directions and G is the non-homogeneous term. The functions represen-
ting the boundary conditions can be approximated by polynomials of
second degree or other suitable functions. For example, the northern

boundary condition can be written as
£.(x) = + b x+ C x2 (2.2)
N e T s Ve :

where the coefficients a bN and ¢, can be expressed in terms of the

N’ N
three nodal values of ¢, namely ¢NW’ ¢NC and ¢NE’ Thus

fN(x) = fN (¢Nw, ¢NC, ¢NE, X). (2'3)

Similarly for the other sides, the boundary conditions are

£ (x) = fg (dsw> ¥sc’ ®spsX)s (2.4)
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fw()') = fw (¢Nw: ¢WC’ ¢SW ,)’)- ‘ (2.6)

With these boundary conditions, an anaiytic solution is obtained
for the element under consideration. To evaluate ¢ at the interior
node P, the values of x and y are substituted in equatior :2.1). This

gives

¢p = ¢p(¢NEI ¢NC, ¢Nwl °Ecl ¢wcl ¢SE) ¢SC' ¢Sw) G) . (2'7)

This is the fundamental formula for the FA method. From this, an

algebraic expression is obtained as

o = Cne®ne * Cnefne * Caww * Cec®EcC

* Cuc®we * Cse®se * Csc®sc * Cowtsw * F(O) . (2.8)

Equation (2.8) is the 9-point FA solution to the PDE.

At this point, it is worth mentioning that equation (2.8) gives
the exact solution for the pointp in the element in the sense that it
is obtained from an analytic solution to the linearized PDE in the
finite element E. On the other hand, in the finite difference method,
each derivative in the PDE is approximated using Taylor's series
expansion of the dependent variable about its neighboring points there-
by committing the truncation error. This significantly reduces the

accuracy of the solution obtained from the finite difference method.

I.'i — , I . B——r
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Another important feature of the FA solution is that, if it is
required to find the derivative of ¢ at the node p, i.e., (3¢/ax)|p,
the only thing to be done in the FA solution is to differentiate equa-
tion (2.1) with respect to x and substitute the values of x and y in
the resulting expression without loss of accuracy . A truncation
error is introduced further if the derivatives are obtained by the fi-
nite difference method.

In the internal small elements of the total flow region R, the
surrounding eight nodal points such as ¢NE’ ¢EC’ etc. in equation (2.8)
are unknowns. However, each is, in turn, expressed as an analytic
function of its surrounding nodal points. Equation (2.8) is thus usec
to express all the unknown nodes in the whole region R. The system of
linear algebraic equations is then formed which is solved numeri-
cally using any of the iterative methods available. It should be re-
marked here that first the FA solutions for two adjacent nodal values
are obtained from two elements which are overlapping each other. Secondly,
the algebraic equations are obtained from the well posed analytic solu-
tion. Therefore the FA solution is éxpected to be numerically stabie.

This is the basic:principle of the FA method of solution which

will be used subsequently in solving the Navier-Stokes equations.
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CHAPTER 3

FA SOLUTION OF 2D NAVIER-STOKES EQUATIONS

In this chapter, the FA solutions of the Navier-Stokes equations for

u, v and p are obtained. The two Navier-Stokes equations for u and v

along with the continuity equation are tu be solved for u, v and p-

Though the number of equations and the number of unknowns are equal,
the pressure variable is difficult to solve in the conventional form.
Therefore, it is more convenient to solve the equations if the problem
is formul§ted in a slightly different way. The following discussion

gives the formulation of the problem and then the solution.

E 3.1 Formulation of the Problem

For a two-dimensional, steady, incompressible flow. the Navier-Stokes

equations are

p(UUx + VUy) = - Px + u(Uxx + Uyy) , (3.1)

- = o (
p(UVx vvy) Py + u\Vxx + Vyy) , (3.2)

and the continuity equation is

U sV =0, (3.3)

{
\
j
j
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Here the fluid has a density p and a constant coefficient of viscosity u.

The above equations can be made non-dimensional with the following variables

where Ur and L are some reference velocity and length scales, respectively.
These quantities are substituted into the above equations and the re-

sulting equations are

1

uu + vuy = - px + Re (uxx + uyy)’ (3.4)
1

uvx + uvy - py + Y (vxx + vyy) s (3.5)

| ux+vy=0. (3.6)
PU_L
where Re = 7}— is the Reynolds number. Equations (3.4), (3.5) and
(3.6) have to be solved for the three unknowns, namely, u, v and p.
In order to solve the pressure variable, it is more convenient

| to cast the Navier-Stokes equations in the form of Poisson equation for
pressure. This is accomplished by differentiating equation (3.4) with
respect to x and equation (3.5) with respect to y and adding the two.

The rasulting equation is

2.2 1
‘ pxx + 9 (2uxvy+ux +vy) +— (D._+D )

yv Re XX Yy

- (qu + vDy) . 3.7)
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where

Dsu +v
X

From equation (3.3), D = 0. Thus equation (3.7) reduces to

P

X + pyy a 2(uxvy - quy)' (3.8)

Now there are four equations to be solved, namely

= - .8
Pax * Pyy = 2(uv, - viu), (3.8)

1
uu  + vuy = . px + e (uxx + uyy) , (3.4)

1
uvx + uuy - py + Te (uxx + uyy), (3.95)

and

u + uy =0, (3.6)

There are, however, only three unknowns. To make the problem well posed,
three independent equations must be chosen. The choice of the equations
depends on the flow. This is discussed in detail in chapter 4 along
with the method of computation. In addition, the problem is still not
well posed without an adequate knowledge of the overall boundary condi-
tions for u, v and P. The usual boundary condition for u and v is

the no-slip and impermeable condition on a solid wall or known flow

profiles at inlet and outlet of a given region. The pressure boundary

condition, on the other hand, is more difficult but can he obtained
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through the use of momentum equation and Taylor series expansion for
pressure. This is done in detail in Chapter 4.

In order to derive finite analyvtic solution for numerical computa-
tion, the local analytic solution is sought in each local element. It
is thus necessary to specify the boundary conditions for each element.
The boundary conditions for the three variables u, v and p in this
investigation are expressed in terms of the eight boundary nodal values
surrounding the element. These nodal values are, in general, unknown
and interrelated. So the FA soluticns of all the elements in the re-
gion R are coupled and eventually determined by the overall boundary
conditions. Approximation of element boundary conditions is important
for obtaining a proper solution. Improper or imprecise numerical treat-
ment of boundary conditions invariably leads to unacceptable or unreli-
able solutions.

In the following sections, the FA solution to each of the equa-

tions in an element is derived.

3.2 Local FA Solution of Poisson Equation

The Poisson equation for pressure derived in section 3.1 is a
linear, second order, nonhomogeneous partial differential equation.
This equation is to be solved in each element of the total region R in
fig. (3.1). A typical element E with the boundary conditions is shown
in fig. (3.2).

Now, the problem is to solve the two dimensional Poisson equation,

Pex * Pyy = 20V, = V), (3.9)
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in an element as shown in fig. (3.2) with the boundary conditions
p(h,y) = pE(Y)
PC-h,y) = py(y)
(3.10)

p(xtk) = PN(X) 1
p(x,-k) = PS(X) .

In order to derive a 9-point finite analytic formula, the boundary
conditions in the present study are approximately represented by sec-

ond order polynomials in x or y. For example

2
pE(y) =a; + bEy tegy

where

1 (3.11)

The other three boundary conditions are similarly written as

2
Py(¥) = ay + by + cy*
where

*w = Puc

b

1 (3.12)
-—(p -p)
w 2k NwW SW

1
u " ;;7— (Pyw - ZPWC + psw)
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Py = ay + Bk v o
vwhere
= p
“N NC . (3.13)
—h'f (pNE szC + pNW) 5
and
PS(X) =ag+ bsx + csx2 ,
where
3s = Pgc (3.14)

1
bs = 31 (Pgp = Pgy

Co ® L—.T (PSE 2P

+P_..)
2h” SC "SW

The nonhomogeneous term in the Poisson equation is assumed to be a

function of x and y in the derivation. This function is then approxi-
mately expressed as a second degree polynomial in x and y and the coef-

ficients of this polynomial are written in terms of the nodal values of

the function.

Since the Poisson equation for pressure is linear, the problem is

solved by dividing it into two simpler problems p, and P, and then i

super-imposing the results to obtain the final solution i.e., p = P, *

Py The two simpler problems are
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Problem (1): Homogeneous equation with nonhomogeneous boundary condi-
tions, i.e.,

plxx + plyy = Q (3.15)
with

Py *pPgy) at x=h

Py * py(x) at y =k

P, * Pg(x) at y = -k
Problem (I): Nonhomogeneous equation with homogeneous boundary condi-

tions, i.e.,

Poxx * p2yy = 2(uxvy - vxuy) (3.16)
with

P, = 0at x =+ hand y = +k.

Solution to Problem (1):

Again, for simplicity and due to linearity, the problem is di-
vided into two parts, each having two homogeneous boundary conditions.
Thus

Pi(xsy) = P (x,y) + p) (x,y) (3.17)
where

Plaxx * playy =0 (3.18)

with the boundary conditions
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Pla *Pg) atx=h , ORIGIMAL I7AcE T
= p.(y) at x = -h OF POOR QUALITY,
Pra ™ PWY =-h
pla = 0 at y = :.k ;
and
Pibxx * Proyy = © (3.19)

with the boundary conditions

Py ° 0at x=+h ,

]
~*

plb = PN(X) at y =

n
’
x

plb = ps(x) at y

The solutions for Pla and P,y are obtained by the method of separa-
tion of variables. These solutions are then superimposed to give the

solution for P, The result is

pl(x,y) = nzl[clnSinh WX+ CZnCosh unx] Sin un(y + k)
+ m§1[C3m81n VoY + C4mCosh vmy] Sin Vi (x + h), (3.20) |
where Wy ® nwx/2k and Vo * mw/2h, .
The constants in equation (3.20) are given in Appendix A along with the

detailed derivation for pl.

Solution to Problem (2)

As mentioned earlier, this problem is solved by expressing the non-

homogeneous term as a second degree polynomial in x and in y, i.e.,
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f(st) = Z(vay - vxuy)
a ao + a1x + azy + asxy taxt o+ agy + agx'y
. a7xy2 . asxzy (3.21)

The nine coefficients in this polynomial are evaluated in terms of the
nine nodal values of the function f(x,y). So the values of the coef-

ficients are

8y * fp

h %F (Fee - £y

3" %F (e - £5¢)

33 © E%E (e = faw - fse * fow)

3 " ;;7 (fge - 2, + £0)

a. = ;;5 (fNc - ZfP + fSC)

8, = — (F o+ £+ £+ £ - 26 - 26 - 2f. - 2f__ + 4f

6 4¥2k2 NE * Tse T Paw * fsw T %fec T *fwe T “Ane T et 4Ep)
a7 = =7 (B * fsp - fw = fow ~2fpc - 26y

38 = 5 (fNE + wa - fSE - fSW - ZfNC + ZfSCL

where the subscripts denote the value of f(x,y) at that node. With this
polynomial approximation, the solution for P, with homogeneous boundary

conditions is obtained as

® ) 2
pz(x,y) = n§1[C551nh Any + CénCosh xny + C7 + C8y + ng ]*

Sin An(x + h, (3.22)
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The constants in equation (3.22) are given in Appendix A along with the

detailed derivation for P,

Equations (3.20) and (3.22) are added to give a solution for Poisson

equation. So , with An = nn/2h,

» L3 .
p(x,y) = ngllclglnh WX ¥ ngosh unx]Sln un(y + k)
+ mgllcsﬁinh vyt CAEOSh umy]Sin vm(x + h)

+ ElICginh A y + CLosh Ay + C. + Cgy + Cgy’lsin A_(x+h).
(3.23)
The FA 9-point formula for any point in the element is obtained by sub-
stituting the corresponding values of x and y in equation (3.23). To
find the pressure at the center of the element, x = 0 and y = 0 are

substituted in the above equation. This gives

@ ._ N o . ® .
Pp = P(0,0) = czsln(515 + ¥ C,Sin(m/2) + E [Co+C ]Sin(nm/2).
(3.24)
This equation is written in terms of the nodal values of p(x,y) and

f(x,y) by replacing the coefficients in the above equation by their ex-

pressions. Then the FA formula becomes

Pp ® C\ePne * CecPec * CsePse * OncPne * CscPsc

+ CNWPNW + C

]
wePwe * CowPsw * One ENE * Cec'fic

+

1 ]
Cse'fse * One'fric * Cp'fp * Coc'fsc * Cow' Eam

Cwc'fwe * Cow'fsw ¢ (3.25)

+
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where the finite analytic coefficients CNE’ CEC""’CNE ’CEC , in the
above algebraic equetion are given in Appendix A, For exanmple,

= Sin m'[r/z =
CEC n:l 3._[ 3 3] Cosh(mn/2) 0.205315,

Gt = 8h3[ z 1 A.32y (4 32, sin(y/2),
SE m=1,3... Cosh(mn/2) °2 m4“4 mzﬂz m4“4 3"3

- 0.001895 h’ .

An important feature of this formulation that can be revealed with
a careful examination of the nodal coefficients of the 'p' terms
(CNE’ CEC"") is that they are independent of the specific problem
considered and hence are universal constants. So these coefficients can
be used to solve any equation of the form Vzp = f, For the 9-point FA
solution for the Poisson equation, this implies that they can be calcu-
lated once and for all and be used thereafter. Further, if the grid spacing
h were assumed equal to k, a great simplification and reduction in com-
putation may be achieved, since the constant coefficients involving the
Sin unk and Sin umh terms become the same. The coefficients CNE’ etc.
for the homogeneous part become universal constants while the coeffi-
cients CNE’ etc. for the nonhomogeneous terms are universal constants
multiplied by h2 or k2 or hk. Thus, when h = k, the following schematic

FA solution is obtained for the Poisson equation.

0.044685 0.205315 0.044685
pp = [0:205315 0.205315|x p_ +
044685 0.205315 0.044685 n
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0.001895 0.01855 0.001895
x hZ x h? X
0.01255 0.21%89 0.01855 x £

Fx_h____xh x ¥ n
.001895 0.01855 0.001895
X h? x h? x;ﬁ

Here the numerical values in the block are the corresponding FA coeffi-
cients to be multiplied by their corresponding nodal values p,or fn.

n denotes the nodal points (8 for P, and 9 for fn).

3.3 Local FA Solution of Momentum Equation

The momentum equation for u or v is a nonlinear (or quasi-linear)
second order partial differential equation. Since an analytic solution
for the whole region of flow is not available, the finite analytic method
is one way of obtaining a numerical solution. As in the solution of
Poisson equation, the flow region R in fig. (3.1) is divided into many
elements with the boundary conditions specified in fig. (3.3). To
simplify the solution, the grid spacings in the x- and y-directions are
assumed to be uniform. Further, to solve the nonlinear momentum equation
analytically in the element, the non-lineer convective terms are locally
linearized. This linearization is a reasonable approximation as long as
the elements are quite small compared to the whole region.

In this section, the solution bf the momentum equation for u is
obtained. From this, the solution to the v-momentum equation is written

by inspection since the two momentum equatioms are similar to each other.

The u-momentum equation is written here for convenience.
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(Reu)ux + (Rev)uy = -Repx + (uxx + uyy) , (3.26)
Reuav.= 2A and Revav = 2B , (3.27)

where LI and Vg, 8Te the averaged values of u and v in the element E.

Substituting equation (3.27) for Reu and Rev, equation (3.26) is

linearized to

- (
U * uyy Repx. (3.28)

Eqﬁation (3.28) is now a PDE with constant coefficients. The boundary

2Au_ + 2Bu
X y

1 conditions for this equation are

u(h,y) = uB(y)
u(-h,y) = uw(y)
u(x,k) = uN(x) (3.29)

u(x,-k) = uS(x)

where u.(y), u (y), u, (x) and us(x) are each expressed by an appropriate
function specified by three boundary nodal values (equations 3.33 - 3.36).

Introducing a change of variable

u = uelAx * BY) (3.30)

in equation (3.28), a simpler form of the momentum equation is obtained,
i.e.,
-(Ax + By)

A2+ BHi=a  + G, - Re pe

X (3.31)

The boundary conditions are
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§. Gh,y) = ug(ye (At + BY)

% u(-h,y) = uw(y)e(Ah O

b 3.32
: A0,k = uy(x)e (A * B | -3

u(x,-k) = us(x)e (Ax - Bk)

The problem is to solve equation (3.31) with the boundary conditions

(3.32) for an element. Since the momentum equation has been linearized,

the above problem is split into simpler ones. The final solution is

then obtained by superimposing the solutions of the simpler problems.

Before solving the problem, the boundary conditions (3.32) are

expressed as second degree polynomials in x or y. The coefficients

of these polynomials are written in terms of the surrounding nodal

Sl

velocities. The eastern boundary condition is

2
where

1

aE = uEC (3.33) ;

=1 -
Bg = 7% (uyg - ugp) 1
1
c =

E- n2 (g = 2upe + ugp)

For the western boundary

2
we(y) = g Oy oy,

.

where

W = e (3.3)




1
b = 2k (uyy - ugy)
1
‘w* ;;7'(“Nw - 2uye * ugy)

For the northern boundary

2
uN(x) = aN + bNx + ch s

where
N * e
1
by * 31 (g - b
¢ =deu - 20 +ul)
N ;;7 UNE UNe UNw

and for the southern boundary

us(x) = ag + b.x + ¢ x2

S s*
where
3g = Ugc
1
bs = 71 (Ysg - Ygy)
1
s e (ugg - 2uge + ugy)

29
ORIGINAL PATL 13
OF PUll i SATY
(3.35)
(3.36)

With these boundary conditions, the problem is split into three

simpler problems. They are

Problem (1): Homogeneous equation with two homogeneous boundary

conditions, i.e.,
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2 2. - - -
A"+ B Ja, = Yixx * Y“1yy (3.37)

with
u = 2, _-(Ah + By)

H

1.11 ('h,)') = (aw + bwy + cwyz)e(Ah - B)’)

»

l.ll (X,k) = (

H]

u (x,-k) = 0,

Problem (2): Homogeneous equation with other two homogeneous boundary

conditions, i.e.,

%+ 32)62 = +u

lTlZxx 2yy (3.38)

with
ﬁz(h))') =0,
uC-huy) =0,

ﬁz(x,k) = (3N + bNx + chz)e‘(AX + Bk)

’

u,(x,-k) = 2, -(Ax - Bk)
H200K) = (35 * bex + cox)e .

Problem (3): Nonhomogeneous equation with homogeneous boundary condi-

tions, i.e.

e 8 - ¥ -(Ax + By)
(A + B Ju, ug ot Ug ey - Rep e (3.39)
with
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The solutions to these three problems are finally superimposed to give

the solution of the momentum equation i.e., u = ﬁl + ﬁz + 63 .

Solution to Problem (1)

Problem (1) is solved analytically using separation of variables.

The solution is, with A = nn/2k and q 2 = A2+32+An2,

4y (x,y) = £ {C, Sinh(q ) + C, Cosh(q x)}Simk_(y+k). (3.40)

The constants in the above equation are given in Appendix B along with

the detailed derivation for ﬁl(x,y).

Solution to Problem (2)

The solution to this problem is exactly similar to the solution to
problem (1) (equation 3.40). If x,y,h,k,A,B and n in problem (1) are
replaced by y,x,k,h,B,A and m, the solution of problem (2) is identical

to that of problem (1). Therefore, the solution to problem (2) is

- @ . .

uz(x,y) = mgl{C1m81nh(qmy) + CZmCosh(qmyD Sin um(x+h) (3.41)
The constants in equation (3.41) are given in Appendix B.

Solution to Problem (3)

The nonhomogeneous equation (3.39) can have different solutions

depending on the way in which the nonhomogeneous term is expressed.

Since this term represents the gradient of pressure in a small element,




e
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it may be assumed constant over the element without significantly affec-
ting the accuracy of the solution. If, however, a very accurate result
is required, the pressure gradient term can be expressed as a polynomial
in x and y as was done for the ﬁonhomogeneous term in Poisson equation.
In the solution given below, this term is assumed constant. The reason
is that the solution is much simpler and saves much computer time with-
out any significant loss in accuracy.

The derivation is done in Appendix B. Here, only the solution is

presented, which is, with kzz L /2h,

ig(xy) = L)y, sim, (eeh) (3.42)
where the function Yz(y) is

- Y QY -By
Yz(y) Csze + C42e + Csle . (3.43)

The constants in equations (3.42) and (3.43) are given in Appendix B.
The three solutions equations (3.40), (3.41) and (3.42) obtained

above are now combined to give the solution to the mcmentum equation.

So

A(x,Y) = U (%) + Uy (x,y) ¢ ug(x,y) (3.44)
But

u(x,y) = dtx,y)eA* * B
thus

u(x,y) = [0 (x,y) + 3,05,y) + TN EN) ) (3.45)
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To calculate u at an interior node P, x = 0 and y = 0 are substituted

in equation (3.45) to yield

3p (3.46)

ulp’ uzp and u3p are evaluated from equations (3.40), (3.41) and (3.42)

and substituted in (3.46). After some rearrangement, the expression

for the velocity is obtained in the form

up = CNEU

+ CNWUNW + CWCUWC + CSWUSW + Cp(Repx)P . (3.47)

NE * CecYec * CseVse * CncUne * Csclsc

This is the 9-point FA formula for the momentum equation where the

subscript P refers to the quantity in parenthesis evaluated at the in-

texrior node P.

The finite analytic coefficients CNE’ CEC""’ in the above alge-

braic equation are given in Appendix A. Some of these coefficients are

shown below

C.= L - {e'Ah (E +E—3)+"-Bk (E+E—3)}S‘( /2)]
“NE "~ n=l,3 2Cosh(q 1) .2 2 'K ol 2 moeininT ,

I 1 e”AN 53
Cec = n=1,3 s G @ - ) Isintw/ DT,
o A, (e Ah Y Sinh(qzB)k + Sinh(q,+B)k
c, = 5 =~ [ : —— -1]Sin(21/2) .
P t=1 h(A2‘+ >‘QZ)2 Slnhquk
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3.4 Solution of Continuity Equation
Like the Poisson equation and the momentum equation, the continuity i

equation can be solved analytically. The u-velocity given in equation

(3.45) has been analytically calculated from the momentum equation.

This analytical solution is substituted into the continuity equation

ux +v =0 , (3.6)
which gives

= - I - - Ax + By
vy [u, (x,y) + U, (x,y) + ug(x,y)] e

Ax + By . (3.48)

- [uy(x,9) + u,y(x,y) + ug(x,y)]e
When equation (3.48) is integrated with respect to y, the solution for
v velocity component in the FA element is obtained. If the integration
is from the node SC (y = -k, x = 0) to the node p(y = 0, x = 0), then
the FA solution for vp is connected to the eight neighboring u nodal
values and Vse nodal value, However, the integration can also be done
fromNC node (y = k, x = 0) to the node p(x = 0, y = 0). Having inte-
grated equation (3.48) and after some algebraic manipulation one has

the solution for v as

vp = 0.5 (vSc + VNC) + CNECNE + CECUEC + ... 4 Cpup' (3.49)
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The coefficients CNE"" are quite different from those of equation (3.47).

In fact, they are quite complicated and are, therefore, not used in the

solution. These results are not presented here. Instead, the following

approximats solution is used.

Since the continuity equation is much simpler than the momentum

equation or the Poisson equation, it is solved using a polynomial approx-

imation. The approximation involves assuming a polynomial for u,

2 2 2.2
X

u=ao+alx+a2y+a3xy+a +asy +36X)'

4
2 2
*a xy” + agx’y . (3.50)
The coefficients in this equation are expressed in terms of the nodal
values of u. Equation(3.50 is then differentiated with respect to
x to give u. From resulting expression,ux is calculated at all the

nodes in the elements. With these values of u, a polynomial in x and

y is written for u, i.e.

- - - - =2 - 2 - 22
Ug 585 % 8 X+ y + axy + ax” + acy” + axy
(3.51)

This equation is now substituted in the continuity equation and inte-

grated with respect to y. Integration is performed once from the NC

node and once from the SC node and the average of the two integration

is obtained,

The resulting solution for v at the node p is
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Vb = 0.5 (vNC + VSC) + 0.125 (uNE - Uy " Y + usw) . (3.52)

The detail of the derivation of this equation is given in Appendix C.

36
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CHAPTER 4

METHOD OF NUMERICAL COMPUTATION

In Chapter 3, the FA solutions for three different equations were
obtained separately. In this chapter, these solutions will be arranged
in a suitable way to obtain the complete solution of the problem in
the total flow region, R. The method of numerical computation is shown

in the flow chart in fig. 4.1.

4.1 Momentum Averaging Scheme

As mentioned in Chapter 3, there are four equations to be solved .
and only three unknowns. Obviously, these four equations are not all
independent. Two out of the three equations (x- and y-momentum equations
(3.4), (3.5) and the Poisson equation for pressure (3.8)) are independent.
One way of making the problem well posed is to use only three equa-
tions at a time. The pressure is first calculated from the assumed
velocity in the flow region using the Poisson equation. Then, in
every element, the average of the assumed velocities for the element
(d and V) in the x- and y-directions are computed. If u is greater
than v, the x-momentum equation is used to obtain the velocity u in
that element. Having done this, the continuity equation is used to
obtain the other velocity component in the element, i.e., V. 1f, on

the other hand, the average velocity in an element in the y-direction

is greater, v is first calculated from the y-momentum equation and then

u from the continuity equation.
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This computational scheme called the Momentum Dominznt Scheme seems
quite reasonable to use but it has some disadvantages. It has a slow
convergence. Furthermore, during iteration, if u is calculated from
the x-momentum equation and v from the continuity equation, this value
of v may not satisfy the y-momentum equation. Also, when u and v are
of the same order, the two momentum equations are not used in the momen-
tun dominant scheme.

In this study, the above scheme is slightly modified to give better
convergence and more stable solution. The pressure is still calculated
using equation (3.8). Next, the average velocities in each element are
calculated from the previously obtained or assumed velocities. With these
average velocities, the x- and y-momentum equations are both solved for
u, and v, Tespectively. One set of velocities is obtained. Now the
continuity equation is used to calculate the corresponding velocities
v, with uy known and u, with v known. Then a weighted average of the
velocities ul, u2 and Vl’ v2 is calculated to give u and v in each ele-
ment. With this new set of u and v, the Poisson equation is again

solved for p and the whole process repeated till convergence is

achieved.

\\\\l\ NN

Figure 1.2 Pressure Boundary Condition
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This computational scheme is the first of its kind in the solu-
tion of the Navier-Stokes equation and is called the momentum averaging
scheme. In all earlier works, ref [3,4], the continuity equation is
not independently used to calculate a variable in the solution scheme.
The pressure is calculated from the Poisson equation and then the velo-
cities u and v are calculated from the x- and y-momentum equations,
respectively., The velocities calculated this way do not satisfy the
conservation of mass criterion. To bring the effect of the continuity
equation in the solution, the dilation term in the Poisson equation is
not set to zero, though, theoretically speaking, this is zero for any
incompressible flow field. It is stated in ref ] that the retension
of the temporal derivative of the local dilation in the Poisson equa-
tion for pressure is an essential requirement for the convergence of
the numerical procedure. Any attempt to totally set to zero the dila-
tion term leads to nonlinear instability in the numerical solution.
This is not the case in the present method of solutions as the conti-
nuity equation is used independently as it should be to solve for u
or v.

Since the solution technique is iterative in nature, some initial
values for u,v and p need to be specified. For any Reynolds number,
the initial values can all be set to zero. However, it is a better
idea to use theresults previously obtained, if any, for lower Reynolds
number as the initial guess. For example, if the solution for Re =
1000 is required, then the solution for Re = 100 or Re = 400 can be
used as the initial value in the solution for Re = 1000. This prac-

tice can save some computational time though the present FA method is

stable with any initial value.
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4.2 Pressure Boundary Condition

Depending on the geometry of the flow, boundary conditions for u,
v and p are specified properly. Usually there is no difficulty in spe-
cifying the velocity boundary conditions. The pressure boundary condi-
tion, however, cannot be specified e¢xactly. To specify pressure at
the boundary, the first few terms of the Taylor series expansion for
pressure are used depending on the accuracy required.

As an example, the wall in fig. 4.2 is considered. The pressures
at interior points 1 and 2 are expanded in Taylor series as

Ax 2

= @8x)-
PL = P * Py fx* pxxlo 2t T (4.1)

and

2
- (24x)
p2 po + px (2ax) + pxxlo + (4.2)

37 cee
0

Eliminating the second derivative from the above two equations gives

4p, - p, =3p  +p, , (28x) (4.3)

or

1 2
pO = 3 (4p1 - pz) - 'j' Axpx . . (4.4)
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To determine Py » the x-momentum equation
0

is evaluated at the point '0' in fig. (4.2).

v = 0 and u, = 0, equation (4.5) becomes

y

1
= =—u
X 0 Re "xx 0

2h u
3Re "xx| o

o
o

"
w| -

(4p;-P,) -
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(4.5)

Since at the wall u = 0,

U is now obtained using Taylor series expansion for u. So

= 2 !
Y15 Y% "7 leo(h) * uxxlo(h) /2t + uxxx‘
u2 u0 ¥ ux|0 (2h) + uxxl 2! uxxxl

Eliminating the third derivative in u gives

8u, - u, = 2h2 u .
1 2 XX 0
Since ug = 0 and u , = .y l =0
Xlop  Yio
8ul - uz
Ugx| . = 77
0 2h

h

3
3!

0

0

3

(4.6)

(4.7)

(4.8)

(4.9)
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Hence,
(8u, - u,)
=1 . s Sl
Po =3 (4P - P)) - ~Ren (4.10)

The boundary pressure on the other walls can be likewise derived.

4.3 Numerical Procedure

STEP 1. With the initial guess given and the boundary conditions
specified, the 9-point FA formula for Poisson equation is first used

to calculate the pressure in region R. The pressure at any node (i,j)

TP Py

is written in terms of the surrounding nodal values. This is done for
all the nodes (2,j), (3,j),.-+,(1,3)s...,(IMAX-1,j). Thus a system of

algebraic equations is obtained which is then solved implicitly by the

line by line implicit method using a tridiagonal solution scheme. This

is repeated for all the lines starting from j=2 to j= JMAX-1. At each

line, the 'TRIDAG' subroutine is called in the main program to solve for

the unknown pressure implicitly. In this way, the solution for pressure

in the whole flow region is obtained. Using these new values of pressure,

the whole calculation process is repeated until the solution converges to

desired accuracy. This iterative procedure within the equation is called

an internal iteration. The number of internal iterations required for con-

vergence is, in general, proportional to the number of nodes in a line.
STEP 2. Having calculated the pressure in the total flow region,

the next step is to calculate the velocities at each of the elements.

Before this is done, the average velocities in the x-direction and the

y-direction are calculated from the initial guess or previous calculatijon.

s
5
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There are various ways of doing this. For example, the average velocity

for u is written as

YAV " SyEUNg * Bpclp. ¢ %SEYSE * cUne * 3pUp

* %cYsc * At * BwcUe * Aswisw (4.11)

where 8NE*3pc» - -+ are fractions which depend on the weightage that

one wishes to give to each node of the element. These cosfficients

must all sum to unity, i.e.,

aNE + aEC .4+ asw =1.0 (4.12)

In the present lnvestigation, the values of aNE’ aEC’ aSE’ aNC’ ap,
e 3w e and 3oy used were 1/36, 4/36, 1/36, 4/36, 16/36, 4/36,

1/36, 4/36 and 1/36, respectively. The average velocity obtained is

equivalent to the integral average of u over the element when u is
approximately fitted with a8 second degree polynomial in x and Y passing
through the nine nodal values in the element.

Now,

A =1/2 * pg » uAV ’

and

= * "
8 1/2 RE VAV s
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are calculated. With these values of A and B, the x-momentum equation

is solved for u, and the y-momentum equation is solved for vIusing the

algebraic equation (3.52). The coefficients in this equation are calcula-

ted by the subroutines 'HOMOG!' and 'NHOMOG' given in Appendix D.

STEP 3. After calculating u1 and Vl’ the continuity equation is

first used to calculate the velocity v, corresponding to u,. Similarly,

using the velocity Vs u, is obtained from the continuity equation. Ac-

cording to the momentum averaging scheme, the velocities u, ani u, along

with v and V, are averaged using the weighcing factors A and B, i.e.,

u A" + U_B"

1 2
us —— <
An + Bn
and
n n
le + VZB

V8 ———

Using the new values of u and vV, A and B are again calculated in each

element and u and v obtained. This process is repeated until a conver-

gence of 10-3 is achieved, i.e., the maximum difference in the values

of u or v (at any node) between two successive internal iterations be-

comes less than 10-3.

After the convergence for u and v is achieved, the old values of

u and v are replaced by the new values. Using these new values, the

pressure is calculated once again. This procedure is repeated until

the solutions for P, u and v converge. In the present investigation

this numerical procedure seems always to produce stable solution.

Thus, no under-relaxation is needed in the calculation.
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CHAPTER 5

STAGNATION POINT FLOW

In Chapter 4, the method of numerical computation was discussed in

detail. In this Chapter, the momentum averaging scheme is used to

check separately the 9-point FA formula for pressure equation and the

9-point FA formula for momentum equation. Tpe stagnation point flow

is used for the purpose. The reason for selecting the stagnation point
flow is that the exact analytic solution is available which can serve

as a good comparison with the FA solution obtained here.

5.1 Verification of FA Solution for Momentum
Equation

In this section, the FA solutions of the momentum equation (3.47) and
continuity equation (3.52) are isolated for verification of accuracy
and stability. This is done by substituting the known pressure distribu-
tion in the momentum equation so that only the continuity equation and
momentum equations in x and y components are solved numerically by the
momentum averaging scheme. This scheme stipulates that the u and v
velocity components in each finite element can be approximately solved
from the continuity equation and the two momentum equations and an average
value taken in the finite element for each of the two velocities. This
is a new scheme and deviates from the existing scheme [3] which calculates
both u and ' components from both the momentum equations and uses the

continuity e, tion only for correction of pressure distribution in

the pressure equation.

i,

L m e e Bt . .. .
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y Ur‘, 3 L b «- /
u=x, v=-1
1
D C
u=0
_ u=1
v=-y v=-y
A B
0 . u=0 1 ooX
v=0

Figure 5.1 Stagnation Flow Problem
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The computational domain for the calculation is shown in fig. (5.1).

The plate is of unit length and the domain extends a unit distance in
the normal direction. The origin and coordinate systiem are also shown in
the figure. The boundary conditions away from the viscous lay-

er near the wall are derived from the inviscid flow solution, namely

u=x and VvV = - y., However, on the side BC, the u velocity is given a
near Blasius profile and v = -y. On the side CD, u=xand v = -1,
Between D and A, u = 0 and v = ~y. On the surface of the nlate, the

|
no-slip boundary condition is used, i.e., u =0 and v = 0.
From the potential flow analysis, it is known that the pressure at

any point (x,y) in the domain is given by

p = -O.S(x2 + yz) . (5.1)

Reynolds numbers of 100 and 400 are considered in the calculation.
With the pressure distribution known, the 9-point FA formula for the

momentum equation derived in Chapter 3 is used to calculate the velocity

of the u- and v-components; and the corresponding components are computed

by the continuity equation. The result is shown in fig. (5.2) for Re = 100.
It is seen that the computed result outside the boundary layer

is in agreement with the exact solution upto the fourth decimal place.

The calculation is repeated for Re = 400 and the result given in fig

(5.3) is again in good agreement with the exact solution.
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Figure 5.2 Streamlines for Stagnation Point Flow (Re = 100)
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Table 5.1
Comparison of Exact and Calculated Values of Pressure
Location Exact Calculated
x y Value Value
0.1 0.1 -0.01006 -0.01017
0.1 0.3 -0.05000 -0.05016
0.i 0.5 -0.13000 -0.13016
0.1 0.7 -0.25000 -0.25016
0.3 0.1 -0.05000 -0.05016
0.3 0.3 -0.09000 -0-09015
0.3 0.5 -0.17000 -0.17014
0.3 0.7 -0.29000 -0.29015
0.5 0.3 -0.17000 -0.17014
0.5 0.5 -0.25000 -0.25014
0.5 0.7 -0.37000 -0.37014
- 0.5 0.9 -6.53000 -0.53016
- 0.7 0.3 -0.29000 -0.29015
0.7 0.5 -0.37000 -0.37014
= 0.7 0.7 -0.49000 -0.49015
- 0.7 0.9 -0.65000 -0.65016
= 0.9 0.3 -0.45000 -0.45016
-0.53000 -0.53016
-0.65000 -0.65016
-0.81000 -0.81017
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5.2 Verification of the FA Solution for
Poisson Equation

Having checked the FA numerical solution for the momentum and con-
tinuity equations, the Poisson equation is checked in a similar way. The

velocity distribution in the domain is now given by

u=xand v =-y, (5.2) i

In addition to the velocity distribution, the no-slip velocity is
used at the plate surface. The 9-point FA formula for the Poisson equa-
tion (3.25) is now used to calculate the pressure in the domain. The
result is shown in Table 5.1 where the computed and exact values are
presented. The computed value of pressure is within 2% of the exact
value. The error is probably from the truncation error of the finite
difference approximation used in evaluating the veincity gradients which
appear in the nonhomogeneous turn of Poisson equation.

With these two checks, the calculations for flow over a flat
plate and wake are presented in Chapter 6 and the flow in a square

driven cavity is discussed in Chapter 7.
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CHAPTER 6

FLOW OVER A FINITE FLAT PLATE

6.1 Description of the Problem

In this chapter, the FA solution to the Navier-Stokes equations
is used to calculate the velocity profile over and behind a finite flat
plate. The Reynolds numbers used in the calculation are 100, 400 and 800
based on the plate length and free stream velocity. All previous analy-
tic studies of wake calculation have been reported for large Reynolds
numbers using boundary layer equations and often with additional assump-
tion that the velocity difference in the wake is small compared with
free stream velocity [S]. Furthermore, the near wake solution and the
combined plate-wake solution are difficult to solve analytically be-
Cause even when the Reynolds number is large, the boundary layer equa-
tion near the trailing edge is not valid as mentioned by Plotkin and
Flugge-Lotz [6]. The full Navier-Stokes equations have to be used. In
this chapter, the flow over a finite plate including the wake region is
solved from moderate to high Reynolds numbers. Results for Re = 100,
400 and 800 are compared with the existing results of near wake and
far wake solutions.

The computational domain for plate-wake region under consideration
is shown in fig. (6.1). The plate is of length L and the computational
domain in the wake region extends to a distance of 3L behind the plate

in the direction of flow and a distance of L in the normal direction,

L—-—-—.-.———.—_.
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The grid sizes in the x- and y-directions are selected depending on the
Reynolds numbers. For Re = 100, the grid size in both the directions is
0.05. The reason for selecting different grid sizes for different Rey-
nolds numbers is to ensure the boundary layer phenomencn in the flow
field is accounted for. Since the boundary layer thickness may be esti-
mated to be inversely proportional to the squarz root of the Reynolds
number, it is necessary to have at least one node inside the boundary
layer. Hence, the grid size should be at least equal to or smaller than
(1/re) /2,

It should be remarked that in the present calculation the full
Navier-Stokes equations are used. Therefore, the calculation is not re-
stricted to boundary layer phenomenon or large Reynolds numbers. Since
the Navier-Stokes equations are elliptic partial differential equations,
the boundary conditions must be given on all sides of the computational
domain. It is assumed that the side DC in fig. (6.1) is far downstream
from the flat plate and so the velocity varies slowly in the x-direction.
Therefore, the downstream boundary conditions are taken as u = 0 and
vx = 0, If it were not for the economy of the computation, the DC
boundary should be chosen further downstream, say at x = 10L or larger.
From B to C it is assumed that the velocity profile is symmetric about
the x-axis or uy = 0 and v = 0. Along the flat plate AB, the no-slip
boundary conditions are used i.e., u =0 and v = 0. On the upstream
side BEA, the u-velocity is taken to be uniform and the v-velocity is
zero, i.e., u =1 and v = 0. As for the boundary condition on the side
DE, the u- and v-velocity components are assumed to be constant in the

y-direction as they are far away from the boundary layer or uy = 0 and
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v) = 0. The pressure boundary conditions are as follows:

Side EA: " 0
Side AB: py " e vyy
Side BC: p =0
y
Side DC: P, =0
Side DE: = 0
o py

at point 0: p =0

The computational procedures are described in Chapter 4. The number of
overall iterations required for convergence of this solution is about
2S5 for Re = 400. As for the internal iterations, 10 iterations are
needed for the convergence of the Poisson equation and about 20 for the
momentum equation. For different Reynolds numbers, the number of iter-
ations for convergence is increased. The numerical results are dis-

cussed below.

6.2 Discussion of Far Wake Solutions

In fig. (6.2), results are shown for Re = 400. The curves are
for the u-velocity at distances of 0, 0.5L, L, 1.5L, 2L, 2.5L and 3L
from the trailing edge of the flat plate. These results are compared
with tho® of Tollmein [7] as shown in fig. (6.3). Although Tollmein
gave results for x < 3L, he stated that the results in fig. (6.3) are
valid only at a distance greater than 3L from the trailing ecdge of the
plate and for large Reynolds numbers. This is because in obtaininy

his result, Tollmein uses a Blasius protile at the trailing edge as the
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Figure 6.2 Velocity profiles in a Wake for Re = 400
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boundary condition. Since the Blasius profile requires the assumption
of large Reynolds numbers his result is valid only for Reynolds numbers
greater than 103. Further, Tollmein used the boundary layer equations
instead of Navier-Stokes equations in calculating the flow behind the
trailing edge. He, in addition, simplified the boundary layer equations
by assuming that the velocity defect in the wake is small compared to the
main stream velocity. These assumptions are likely to cause substantial
error in the solution in the near wake region where the velocity defect
is still large as can be seen from fig. (6.3). Even for u as large as
2.5L, the velocity defect in fig. (6.3) at the centerline is 0.25 which
is 25 percent of the main stream velocity. Therefore, the assumption
that the velocity defect is small is invalid in the range 0 < x < 2.5L.

In the present study, the full Navier-Stokes equations are used

to solve the flow over and the wake behind a flat plate. The momentum

equation used here is

1
uux + vuy Re (uxx + uyy) - Py, (6.1)
as compared to the equation
_ 1
Y1x * Re Y1yy (6.2)

used by Tollmein. In equation (6.2), u, is the velocity defect i.e.,

u, = l-u. Since the present method uses the full Navier-Stokes equa-
tions, it can be, theoretically speaking, used to calculate velocity pro-
files for Reynolds numbers ranging from very small to large values. Fur-
ther, the combined boundary layer-wake solution can be obtained by this
method without specifying the velocity profile at the end of the plate.

One cf the purposes of calculating the flow over the finite flat plate
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is that there is no existing work which gives correct solutions to the
problem with the boundary layer-wake interaction at moderate Re. Since
there is no exact solution available to verify the accuracy of the pres-
ent results, the computational domain is extended to a distance of 3L
behind the trailing edge so that it may be approximately compared with
Tollmein's far wake result which is claimed to be valid for x > 3I,. It

is expected that the solution obtained by using boundary layer equation
must fail at a distance of 0(Re~i) from the trailing edge because at this
distance x is of the same order as y (the normal distance from the center-
line) and the full Navier-Stokes equations must be used.

Consider now fig. (6.2) for Re = 400 and fig. (6.3). Fig. (0.3) is
restricted to far wake regior or x > IL and large Re. Since fig. (6.3)
does not give a curve for X = 3L, the velocity protile for x = 3l is
approximately interpolated between the curves for x = 2,SI and x = 6.5L.
Comparing Tollmein's result at x = 3L for large Re with the present re-
sult for x = 3L at Re = 400 in fig. (6.2), it is seen that the axial vel-
ocity at a given x in fig. (0.2) is larger than that in fig. (6.3). The
velocity predicted in the present analysis is not a Biasius profile at
the trailing edge while the velocity profile in tig. (0.3) is a Blasius
profile. At any x location the centerline velucity in fig., (6.3) asymp-
totically increases from a smaller value to a value sreater than that
in fig. (6.2). Physically this implies that the entrainment rate is Jdif-
ferent in the two cases. The reason for this difference in entrainment
rate can be given by considering the momentwn cquation in the x-direc-
tion

uu_ o+ vu - (u + u_ )/Re (6.3
) y Xx vy
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Denoting the velocity difference u, as
u1 =u -u (6.4)

and substituting into equation (6.3) yields
1
(u, - up) (ug = udy *+ v(ug- u) = pe [lugud, + (ug-uy), 1 (6.5)
Since u_ is a constant (i.e., u  =1), the above equation on simplifi-

cation bhecomes

1

uu,, - U, + vuly = (vulyy + ulxx) e ’ (6.6)
uu - ulyy/Re = uu,, - vuly + ulxx/Re

The equation used by Tollmein was
.- ulyy/Re =0, (6.7)

So the terms on the right hand side of equation (6.6) are not present

in equation (6.7). The effect of these terms can be neglected only
when uy and its gradient are small and when x > 3L. Therefore, the
difference between the present calculation based on the full Navier-
Stokes equations and Tollmein's calculation based on equation (6.7)
create the difference in the entrainment rate. This difference mani-
fests in the different speed of recovery of the velocity defect particu-
larly in the near wake region. It should be noted that since Tollmeins'
approximation and entrainment prediction in the near wake region are

not valid, the result at far wake region, eveﬁ though profile is approxi-
mately correct, requires a shift in the origin of the trailing edge to

account for the defect in the entrainment rate.
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The results for Re = 800 are shown in fig. (6.4). These results
seem to have better similarity with the Blasius solution at the trailing
edge and with other existing solutions at a distance x > 3L. However
the difference is still appreciable. Again, the use of equation (6.7)
by Tollmein in calculating is one of the reasons. Further, Tollmain's
results were obtained, with very large Reynolds numbers which should be
in the order of 104 to 106. Hence, the reasons for the discrepancy be-

tween this result and other results are the same as these discussed for

Re = 400.

6.3 Discussion of Near Wake Solution

Regarding >ther previous near-wake solution, Goldstein [8] in 1930
first calcuiated the flow downstream of the trailing edge of a thin flat
plate at zero incidence. He used the boundary layer equations assuming
that the Reynolds number is very large. Hence he appropriately took the
Blasius profile as the boundary condition at the trailing ~dge. However,
Goldstein [8] solved the boundary layer equation in the wake with a
series solution for the velocity profile by expanding the series from the
trailing edge. The solution is thus valid only for small distances from
the trailing edge. As the distance from the axis increases the result
becomes inaccurate. Further, Goldstein's solution'has an algebraic singu-
larity at the trailing edge of the plate. Like Tollmein's result, his
result is also valid only for large Re. Fig. 6.5 shows Goldstein's re-
sult as compared to the present result for Re = 400 and 800 in figs. (6.2)
and (6.4) in the near wake of a flat plate. Goldstein's axial velocity

at x = 0.2L is 0.43 as compared to 0.45 for Re = 800 in the present study.
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Since the result obtained by Goldstein in fig. (6.5) is from the
boundary layer equation, which is parabolic, there is no mechanism in his
analysis by which the wake solution behind the trailing edge can be com-
municated to the flow upstream of the plate. This is true only for
large Reynolds number and the flow is governed by boundary layer equation.
However, it was pointed out by Plotkin and Flugge-Lotz [6] that no mat-
ter how high the Reynolds number, there must exist a 7<gion near the
trailing edge in which the boundary layer assumptioms are not valid, and
the full Navier Stokes equations must be used. In shori, the present
calculation differs from Goldstein's calculation in that the Reynolds
numbers are 400 and 800 instead of large Reynolds numbers and that the
full Navier-Stokes equations are used instead of boundary layer equation.
These are possibly the reasons for the difference between Goldstein's
results in fig. (6.5) and the present resilt for Re = 400 apd 800.

Fig. (6.6) also compares the present calculation with Goldstein's
result for the akial velocity for x ranging from 0 to 0.6. The chain-
dot line obtained by the present method for Re = 100, 400 and 800 are
shown in the same figure. The axial velocity obtained by Goldstein is
slightly less. This difference is probably because his calculation was
not based on the full Navier Stokes equations.

Plotkin and Flugge-Lotz [6] had solved by finite difference method
the flow over « finite plate and wake. They divided the region into two
parts. In the region closer to the trailing edge they calculated the
full Navier-Stokes equations and in the other region far downstream, they

used the boundary layer equations. Unfortunately, they too, like others,
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solved for Re greater than 105. They mentioned that the trailing edge

disturbance necessitates solving the complete Navier-Stokes equation
in the trailing edge region even at high Re. This implies that the flow
variation in both x and y directions is important even for large values
of Re. Their result is shown in fig. (6.7) which is again slightly
different from the present result, the main reason being the large dif-
ference in Reynolds numbers.

The behaviour of the velocity profiles at Re = 100 is shown in
fig. (6.8). These profiles are markedly different from those obtained
by boundary layer equation. It should be mentioned that even though
the flow is laminar over the flat plate for large Re, the flow may
quickly become turbulent once it leaves the trailing edge of the plate.
This is because the velocity profile in the wake has an inflection point,
which according to Rayleigh inflection point theorem [9] of stability
analysis could become unstable in the wake region. Therefore, the
laminar solution in the near wake region for moderate Reynolds numbers

is really of practical interests.

6.4 Conclusion

The flow over a finite flat plate investigated in the past is
mainly for large Reynolds numbers. However, the same flow at moderate
Reynolds numbers has given difficulty to investigators over the past
few years. The main problem was that the full Navier-Stokes equations
must be used. Therefore little was kngwn about the plate-wake inter-
action. In most of the previous investigations the Blasius solution or

boundary layer solutions has been used as a boundary condition at the
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trailing edge. Further, a boundary layer equation is used in the wake

region. However, if the plate is finite and Reynolds number is moderate,

the wake-flow may interact with the viscous flow over the plate. So the

Blasius solution can no longer be assumed as the boundary condition for

the wake region. In the present method, no such assumptions are made and

the full Navier-Stokes equations are solved with the correct boundary

conditions imposed on the leading edge rather than the trailing edge of

the plate.

b ool




§
I

CHAPTER 7
FLOW IN A SQUARE DRIVEN CAVITY

The algebraic 9 point formulae derived under the FA method given
in Chapter 3 were verified in Chapter S for their accuracy. These FA
formulae were combined to form a numerical method of computation and
used to solve the problem of flow over a tinite flat plate in Chapter
6. Results for moderate Reynolds numbers wore obtained and compared
with the existing results for high Reynolds number with boundary layer
assumption. Fairly accurate results are obtained from the present FA
numerical solution of Navier-Stokos equation for primitive variable. How-
ever, the momentum averaging iterative scheme has not been rigorously
tosted as the flow over the finite plate is always dominated by the x-
direction mementum. One, thus, may still have some doubt that the vali-
dity of the momentum averaging iterative scheme. In this chapter the prob-
lem of flow in a driven cavity is solved by the proposed momentum avera-
Bing scheme and the FA averaging method. One, thorefore, cxpects that
in solving the cavity tlow, the momentum averaging tterative scheme 1s
Put on a rigorous test as the flow field of the problem contains recir
culation and separation and the dominant momentum components rapidly
shitft from one finite eloment to the other in the flow ficld. Further-
more, the solution can be compared with results obtained by manv other

investigators [2,3,4],
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Fig. (7.1) shows a cavity in which the fluid is driven by a plate
AB moving at a velocity u = 1 from left to right. The calculations
are done for Re = 100, 400 and 800. The boundary conditions for u and
v on all the sides are zero except for the plate AB where u = 1. The
pPressure boundary condition cannot be specified exactly and so a Taylor
series expansion of pressure about the four walls to their immediate
interior neighboring nodes is carried out. Details of the derivation of
the pressure boundary condition aregiven in Chapter 4. The choice of
the grid size is based on the Reynolds number as is discussed in Chapter
6. In short, higher the Reynolds number, the finer is the grid. For
Re = 100, the grid size (h) is 0.025 in both directions..For Re = 400,

it is also 0.025,and for Re = 800, it is 0.0167.

7.1 Velocity Disiribution

In fig. (7.2), the u-velocity profiles along a vertical line
through the geometric center of the cavity are shown. The protiles arc
for Re = 100, 400 and 800. It is seen that at Re = 100, the velocity
curve is smooth showing that the diffusion of viscous effects penetrates
throughout the cavity but for larger Re the velocity gradient in most
part of the cavity is constant and the boundary laver -like velocity
profile is seen such that near the top and bottom sides ot the cavity,

the velocity gradient is very steep. This accounts for the fact that

the shear stress of the skin friction is large tor high Reynolds numbers.

The maximum negative velocity increases and shifts toward the top sur-
face of the cavity., For Re = 400, the maximum negative velocity is

about 0.28 and for Re = BOO it is about 0.30. The result obtained
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by Chen and Naseri and Li [2] from vorticity-stream function formulation
is shown in fig. (7.3). The uwo results are fairly the same. The fact
that the two results agree with each other and that Chen et al's FA
numerical solution does not utilize momentum averaging idea shows that the
averaging iterative scheme is valid in this problem where the dominant
momentum shifts widely from an element to an element.

[t is obvious that, as the Reynolds number increases, a greater
number of iterations are required for the convergence of the results.
For Re = 100, the Poisson equation needed 10 internal iterations for
convergence to 10.4 whereas the momentum equation needed 20 interval
iterations to converge to 10‘3. For the combined solution of u, v,

p to converge and stabilize , 25 overall iterations were given. For

the case of Re = 400, the Poisson equation required 15 interval

iterations, the momentum equation required 25 internal iterations and

the numerical scheme required about 35 overall iterations for conver-
gence. For Re = 800, the number of internal iterations tfor Poisson
equation was about 20 and for momentum equation it was about 40. Over-
all, 45 iterations were needed for convergence. [t was noted during

these calculations that the number of internal iterations required for
momentum equation to converge had a relation with the erid size.

Indced,

the number of interval iterations needed was tound to be in proportion

to the number of grid points in a column. This is so since in the Gauss-
Seidal iterative method one can expect that the substantial improve-

ment in the nodal values in the first internal itevation will be con-
fined to the first few rows. Theretore, it seems that, if there are

40 nodes in a column, then probably 40 iterations are

required to obtain
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a good numerical solution. The quantitative values for typical nodes in

the cavity for various Reynolds numbers are given in Table 7.1.

7.2 Streamline Pattern

Since the velocity distribution alone does not give a good idea of
the flow pattern in the cavity, the stream function was computed from the

-

velocity distribution. This is done by solving the equation

wxx + wyy = - (uy - vx) (7.1)
Equation (7.1) is essentially a Poisson equation and is identical to

the Poisson equation for pressure (3.4) in Chapter 3. Since the

FA solution of Poisson equation is already giQen in equation (3.25),
equation (7.1) is readily solved if the vorticity (uy-vx) is computed
from the known FA solution of u, v by difference approximation. Fig.
(7.4) gives the stream function contours for Re = 100. The contours

for Re = 400 and Re = 800 are given in figs. (7.5) and (7.6). The
stream function at the center of the vortex has a maximum value of 0.10
which compares fairly well with the result of 0.101. The streamlincs

for Re = 100 given in reference (2] are shown in fig. (7.7).

It is noted that the separation at the two top corners are predicted from

the present FA method for primitive valuables.

7.3 Pressure Distribution and Force Balance

Fig. (7.8) gives a plot of isobars in the cavity for Re = 100 and
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Table 7.1
Comparison of Velocity at Various Points with that of
Chen et al.
. u-velocity at different Reymolds
Location Numbers
100 [
X ) 4
[2] Present [2] Present
0.5 0.1 0.40 0.42 0.31 0.30
0.5 0.2 0.09 0.11 0.20 0.16
0.5 0.3 -0.08 -0.05 0.11 0.05
0.5 0.4 -0.18 -0.15 0.00 -0.04
0.5 0.5 -0,21 -0.20 -0.10 -0.12
0.5 0.6 -0.18 -0.19 -0.20 -0.20
0.5 0.7 -0.14 -0.15 -0.27 -0.27
0.5 0.8 -0.09 -0.10 -0.27 -0.27
0.5 0.9 -0.05 -0.04 -0.18 -0.18
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41 x 41 grid. The result is quite accurate. This result is quite simi-
lar to that in fig. (7.9) as obtained by Burggrat | 4. Another check tor
the pressure in the cavity was made by making a force balance. That is,
the full cavity was taken as a control volume and the pressure force and
viscous shear force in the x-direction and in the y-direction were
separately added and it was found that they are very small. In the x-
direction the net force in dimensionless units is of the order 10-3 and
in the y-direction it is 10-4. That is, the force balance is good upto
the third decimal point. This is obtained for all the three different
Reynolds numbers. Fig. (7.10) gives the pressure distribution for
Re » 400. Compar:son of fig. (7.8) and fig. (7.10) shows that as the
Reynolds number increases from 100 to 400 the pressure diffecrence between
the two corners at the bottom increases from Ap = 25 to Ap = 55. It is
interesting to see that the pressure difference between the vortex center
and the downstream cocrner is also the same tor the Reynolds numbers
considered.

From the above discussion of the FA solution for flow in c¢losed
square cavity by momentum averaging scheme it may be concluded that
the FA solution and the momentum averaging scheme to work very well

in predicting the complex vecirculating tlow.
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CHAPTER 8

CONCLUSION AND RECOMMENDATION

8.1 Conclusion

Although the Finite Analytic Method is still in its developmental
stage, it has already demonstrated the advantage of invoking the local
analytic solution of partial differential equation in constructing the
numerical solution of linear or nonlinear partial differential equations.
Chen and Li [1] and Chen and Naseri and Li [2] who initiated the develop-
ment of the Finite Analytic method, have reported a great success in
using this method for solving Navier-Stokes equations with the vorticity-
stream function formulation. The Finite Analytic solution for Laplace
equation [1], non-linear ordinary differential equation [10] and
Poisson equation [11] have also been investigated. From these investi-
gations it is seen that the FA method is accurate and has smaller numeri-
cal diffusion than the other numerical methods. Further, it converges
well and is stable.

It was, therefore, with this belief that an FA solution of Navier-
Stokes equations in primitive variables was considered in this study.
Since the comparison of the FA method with other methods has been discus-
sed in details by Cnen and Naseri and Li [2}, no attempt was made to
compare the results of the FA method with other methods. In this study,
a new numerical procedure called the momentum averaging scheme was

developed to accelerate the convergence of numerical solution for the
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Navier Stokes equations formulated in u-v-p variables.

In this study, the Navier-Stokes equations are considered as a whole
in a local element. The only approximation made in the equations is the
local linearization. On each side of the element, the boundary condition
is approximately represented by a second degree polynomial. From the
first problem in Chapter 6, which considers the plate wake interaction,
it was found that at moderate values of Reynolds numbers, i.e., 100, 400,
and 800, the Navier-Stokes equations should be considered in order to sim-
ulate the interaction between the wake flow and boundary layer over the
plate and to obtain correct solution from near wake to far wake regions.

In the second problem, the FA solution of thr Navier-Stokes equa-
tions and the developed momentum averaging scheme are vigorously tested.
They are used to solve for the closed square cavity flow where recircula-
tion, separation and steep velocity gradients all exist. The numerical
solution predicted ty the present FA method compares favorably with the
existing results.

From the present investigation it may be concluded that the FA nu-
merical solution of the Navier-Stokes equations with the proposed momen-
tum averaging scheme is accurate, stable and converges well. The method
developed here for the two dimensional Navier-Stokes equations can be
easily extended to the three dimensional case. It is, therefore, hoped
that this study will pave the way for future investigations of the FA

solution for three dimensional Navier-Stokes equations.
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8.2 Recommendation

During this study, a number of difficulties arose in obtaining solu-
tions and some critical decisions were made in order to get the final
solutions. In this process a number of ideas were uncovered which are
likely to improve the FA method. For example, as mentioned earlier, the
grid size used in this method for solving Navier-Stokes equations depends
on the Reynolds numbers. In order to bring the effect of the boundary
layer in the flow field, at least one node was needed inside the boun-
dary layer. This required that the grid size be very fine thereby in-
creasing the computational time by a large amount. In order to
reduce the computational time, the FA method needs to be developed to
take nonuniform grid size so that in the boundary layer, the grid can
be made as fine as required, and still maintaining a coarse grid out-
side the boundary layer.

Another way in which the FA solution technique can be improved is
by obtaining an analytic solution which has simpler series solution
than that obtained in Chapter 3. In Chapter 4, it was mentioned that
before calculating the velocity from the momentum equation, the coef-
ficients corresponding to the values of A and B are calculated from a
subroutine for each element. Since the calculation of the coefficients
involve series summation, a lot of computational time is needed by the
FA method. To reduce this computational time, a new technique of obtain-
ing the analytic solutions could be conceived. For example, the approxi-
mate function for the boundary condition need not be a second degrec
polynomial. Instead, it could be a linear combination of functions that
satisfy the governing equation. This could lcad to lesser computational

time and better solutions.




LARLUNES ULINS L LN LT B A SRR

Ci o

OF POCK Q; Y

t

APPENDIX A
COMPLETE FA SOLUTION OF POISSON EQUATION

In chapter III, the solutions to Poisson equation, momentum
equation and continuity equation were simply written down. The solu-
tion to Poisson equations is obtained here in this Appendix. The
other two equations are solved in Appendices B and C.

Before solving the equation here, an outline of the solution pro-
cedure is discussed briefly. The problem is divided into three simpler
problems. Each of these problems is solved separately and the solu-
tions are then added to obtain a solution of the Paisson equation.

The equation under consideration is
Vzp = 2(u v, - v_u )
xy xy

with all four nonhomogeneous boundary conditions. The three simpler

problems are:

"
1}

(1) Vzpla 0 with homogeneous boundary conditions at y = + k.

[
]

(ii) Vzplb = 0 with homogeneous boundary conditions at x

(iii) V2p2 = 2(uxvy - quy) with homogeneous boundafy conditions at

+ h.

x = +handy= +k.

Having solved these three problems, the solution to the Poisson equation

is written as
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P=Pla*Pp*Py-
The equation to be solved is
2
VP, =0, (3.23)

and the boundary conditions are

Pja = Pg(y) at x = h |
pla = pw()’) at x = 'h,
Pia = 0aty=+k,.

The above equation is solved using separation of variables. The

variable Pla is assumed to be a product of two functions, i.e.,

Pra(Xsy) = X(x) Y(y). (A.1)

This is substituted in equation (3.23)and the resulting equation di-

vided by pla(x,y). This gives

x" YH
X Y

or
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Since the boundary conditions on the north and south side are zero,
the + sign is taken in equation (A.2). This leads to two equations
2
X"-u X =0 (A.4)
and
2
y"+ - Y=0 . (A.5)
Equation (A.4) has a solution of the form
X(x) = Clsinhux + C2Cosh ux o, (A.6)
and equation (A.5) has a solution of the form
Y(y) = D,Sinuy + D,Cosuy . (A7)
Therefore,
(A.8)

pla(x,y) = (C151nhux + CZCoshux)(Dlslnuy + DZCosuy).

The boundary condition at y = -k 1s now substituted in (A.
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=3 Pia ™ 0 = (C, Sinhux + C, Coshux) (-, Sin uk + D, Cos uk) :
= §
D. = D Cos uk
. 1 2 Sin uk
Replacing D1 in (A.8), P1a (x,y) becomes
4 D.Sinu(y+\)
?i pla(x.y) = (C1 Sinhux + C2 Coshux) SThk ,
- or |
- |
: . Sinpu(y+k) '
- . \ : — ALY
. plﬂ(x.y) (C1 Sinhux + C2 Coshux) ETn N , (A.9)
where the constant D, is absorbed in Cl and C,. Now, at v = K, A ]
0. Therefore S
= = N 31 N NS S.L“.l.“ghl
plu(x.y) = () (Ll Sinhux + Lz Coshux) Sk :
Sin(2uk) = 0
2u kK = ng, no=1,2, 7
n
and
' K-
Stap (y+k)
Lo (A

-

0
Therefore, p (x,¥) = L. [C, Sinhp x + €, Coshp x| - ==
! i1u( ' n=l l 1 M ! " ] sinp k
n
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The boundary condition at x = h is now substituted in equation

(A.10). This gives

Pra (oY) = pe(¥) = I, [C, Sinh b+ C, Cosh u h] »

Sin un(y+k)

§IE_T;F?_-—- . (A.11)

2
But pE(y) = aE + bEy ooy,

Multiplying both sides of equation (A.1l1) by Sin um(y+k) and

integrating with respect to y, the following relation is obtained

k k
a, {k Sin u_(y+k)dy + by {ky Sin u_(y+k)dy

k
2 .. )
+ o {k y© Sin u_(y+k)dy =

k
Sinh u h + C, Cosh u h] [ Sin uo (yek)*

¥ 1c
1 "k

n= n

Sin u_(y+k)dy (A.12)

Noting the orthogonal relation on the right side the above equation

reduces to

k k

ap {k Sin u_(y+k)dy + bg )y Sin u_(y+k)dy +

S

Cosh unh] - (A.13)

k
2g; . = ; .
e {k y“Sin un(y+k)d) = [Ch151nh unh + le

Sinu K
n
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This is written as

Sin unk
% [a.EE1 + bEEz + CEES] = C1n51nh unh + CZnLosh unh s (A.14)

where

k
E1 = {k Sin un(y+k)dy

1 n
Q[l'(°1)]’

k
E2 = {k Sin un(y+k)dy

k n
-;;[1*(-1)].

k
2as _ 2 2 U1 PRTL
Eq {k y'Sin u_(y+k)dy = i (2k unz) (1 - (D]

Similarly, using the boundary condition at x = - h, a relation is ob-

tained which is

Sin unk

5 [awE1 + waZ + CWES] = - ClnSth unh + C,,Cosh unh . (A.15)

Clnand CZnare now obtained from equations (A.14) and (A.15) so

Sin unk
“In® K Cosh ik (% = &) By * (O - By By ¢ (eg - c)E5l,

and

Sin unk
CZn: 2k Cosh unh [(aE * aW)EI ¥ (hE * bW)E2 * (CE * CW}E3]'
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Therefore,

pla(x'Y) = L [clnSinh WX+ CZnCosh unx) Sin un(y+k),

1 . ) -
Cln” e STaR R (g - WL (by - bIE, + (¢p - cIEgl (A1)

1
Con2 3k Cosh unﬁ [(as + a)E) + (bg + bE, *+ (o

Solution to Equation (3.24)

The equation to be solved is

2
Vplb—()n

and the boundary conditions are

P1b

P1b

Pib
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The solution to this equation is exactly similar to (A.1l6).
So the solution can be written by simply replacing x, y, h, k and Hn by

y, X, k, h and A Therefore,
plb(x,y) = m§1 [CsmSinh vy * C4mCosh vmy] Sin\;m(x + h), (A.19)
where

1
sz mﬁn—.r [(aN-as) Fl + (bN-bS) FZ + (CN = CS) F3] ’ (A.20)

and

1

Can™ T coshv k [y + (O BIFy + (oyreg)Fsl. (A.21)

Fl’ F, and F3 in equations (A.20) and (A.21) are given by

2
h | .
Fl z Ih Sin Vm()u»h)dx = 5 (1 - (-1) 1,
b m
h N .
F2 = fh X Sln\)m(x¢h)dx = - - [i+ (-1)7),
- m
Mg, 2 2 1 m
F3 = Ih x  Sin \)m(xﬂ‘)dx == (2h° - :)_2)[1 = -1",
- ) n
where
v ® Eﬂ, me=1,2,....
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Solution to Equation (3.21)

The equation to be solved is
V2 =2(uyv -v.u) (3.21)
P, X'y Xy’ » L

and the boundary conditions are

Pp=0at x=+h

"
+
=~
.

P, = 0 at y

This equation is solved by expressing the nonhomogeneous term as

a second degree polynomial. The term 2(uxvy - vxuy) is simply assumed

to be a function of x and y. So

2
v p, = f(x,y) s (A.22)
where

5

f(x)')=a +ax+ay*axy¢ax2+ay2+ax2y‘
! 0 1 2 3 4 5 6

+ a7xy2 + asxzy (A.23)

These 9 coefficients can be written in terms of the nodal values of

f(x,y). As an example

Pa——.




f(h,0) = f__. =a_+ alh + a4h2
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- po

EC 0

£(0,0) = f_ = a

f(-h,0) = fwc =3, - alh +a

P 0’

, .
ah

From these three equations, a . a; and a, are obtained. In this way,

all the nine coefficients can be expressed in terms of the nodal values

of f(x,y).

[
"

So

fo

Loe ¢,

2h ‘“EC wc’

e (Ey - £o0)

2k (Sne - fse

o (fo - £ - o+ £
ahk C'Ne T faw o fse t fow

1
77 (g * fsp * fyw * fow - 2fc - 20 - e - Mg ¢ 4D

4h°k

(R S P T )

sk NE T TSE T Paw T foy Ec * “twe
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8y = —— (£ + £ = Foo = Fou + 2£ - 26, )
8 2 NE NW SE SW SC NC”*
4h7k
The function f(x,y) is now represented by a Fourier series, i.e.,
f(x,y) = nkp Da(¥) Sin A (x + h), (A.24)
where A =M, n=1,2,... .
n h
Multiplying equation (A.24) by Sin M(‘n’ + h) and integrating with
respect to x, the following relation is obtained.
h - h
{h f(x,y) Sin Am(x + h) dx = nél Dn(y) {h Sin Am(x + h) Sin )
(x+ h)dx. (A.25)

Due to orthogonality of the sine function, the above equation reduces to

h
D (y) h = [ f£(x,y) Sinx_(x+h)dx
n -h n

. h
2 .
= (a0 + ay ¢ asy ) {h Sin ,\n(n + h)dx

h
2 .
*(a) +agy s ay’) {h xSina (x + h)dx

2 h 2
* (ay v agy + ay) {h x7 Sinx (x + h)dx,
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2
D (¥) h = (ag + ay + agy’) G
+ (a, +a,y +a yz) G
173y A, 2

2
Py v agy v ay) 6,

where

h
. 1 n
G = {h Sin A (x + h) dx = i; 1 -7,

h
2 f x Sin An (x + h) dx = - %— [1 + (-l)n],
-h n

(2]
]

h
g2 xsinaoem axs Zo@n? oy o),
~-h

An b
So,

(3]
]

1
DY) = p [(a,G, + 3G, + a,65) + (a )G, + a6, + a,G,)y

2
* (356) + 2,6y ¢ a Gy ],

and
f(x,y) = | D_(y) Sin v.(x +h),

It is now assumed that pz(x,y) is also of the form

pz(X.y) =

b=}
nes 8

1 Bn(y) Sin vn(x + h)

(A.

(A,

T RS TR T RS R T R T e

.24)

102
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Substituting equations (A.24) and (A.27) in the governing equation, i.e,

equation (3.21), the following equation is obtained

aan(y)
-—;;7-—' " Ay BaOY) =D (y) (A.28)

This is a non-homogeneous second order differential equation in Bn(y).

The solution consists of two parts, namely complementary solution and

particular integral. Now,

-~ ~ Az
D (¥) = a, + a,y + ayy (A.29)
where
a, =+ (aG +aG,+aG.)
0 h ‘%01 172 473
a, = = (ayG, + a.G, + a,G.)
1~ h ‘927 372 873
a, = 1 (acG, + a_G, + a_G.)
2 h ‘%57 772 63

Since Dn(y) is a second degree polynomial in Yy, the particular solution

of Bn(y) is also assumed to be a second degree polynomial in v. Thus

2
Bn(y) ] = C7 + C.By *ng (A.30)

Equations (A.29) and (A.30) are substituted in (A.28) to give




W

2 2 " - °
cC . =
2 9 kn (C7 + C8y + ng ) ao + aly + azy

From this, C7, C8 and‘C.9 are evaluated. So

c - 0 232
7 ", ., T4
A2 A
n n
1
C, = --1_,
8 A 2
n
c=-.al_,
9 2 2
n

The complementary solution of Bn(y) is

Xny -Any

Bn(y) = Ale + Ble
Hence the complete solution to equation (A.28) is

Ay ~Ay 2
Bn(Y) = Ale o, B e o (9 * C8y * CQY !

where

L1
777 BBt 6, a6y ¢

n

1
Cg = L2 (3,6) + a6, + agGy)
‘g

c - _L_ 4G ;
TN (3gG) + a,G, + a.G).
n

104

(A.31)

(A.32)

e et = = g - rrover Ty e anae
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The constants A1 and B1 are evaluated from the boundary conditions

Bn(y) =0aty = *+ k. Therefore,
xnk -Ank
2
Ale +Ble +C +C8k+Ck—0
and ')‘nk -A.nk

2
Ale +Ble +C7 -C8k *Cgk =

From these two equations A1 and B1 are found to be

Sinh )} k Cosh A k Sinh A k
A, = n -C k n -C k2 n
1 7 Sinh E Sinh ZAnE 9 Sinh 2,\nf€ ’
and
Sinh A k Cosh X k Sinh \ k
B n -C k2 n
1 Sinh ZA k' 8 Sinh 2>\ k 9 Sinh 22 nk *

Finally, the solution for (x,y) is obtained as
P2

® s ‘ 2
Py(x,y) = L, [C. Sinh MY *Cg Cosh iy + C,+Cuy+ Cqy]

Sin An(x + h), (A.33)
where
C8k
Csn® " SRR (A HY
and
2
C, +C_k
C. = 7 9

6n  Cosh EW3)
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The three solutions obtained above are now summed to give the

final solution to Poisson equation. Thus

p(xi)') = pla + plb + pz ’

and the value of P at the interior node p is

Pp * °NEPNE * pcPpc * SgpPgp * °NcPNe * SscPsc

1] 1}
“NWPNW * SwcPuc * “swPsw * °ng'fNg * CSgc fec

f +

] 1
“sE 'sg * SNe'f £

1 ! t
NC * S Ep oo + oy NW

f f

1 1
“wc ‘wc * Ssy'fgy -

The coefficients are given below.

NE = “SE NN~ “SW " np= sm = 0.044685

EC = “°NC WC = °SC  m= S = 0.2053is

where

- Sin(mn/2)
m = Cosh(mn/2)




s - 4 L LR R LD L L L AL

(

Lo J IR,
ORI

~

NE

.2, T 1 32 4 32 . .8Sin(mn/2)
M3 QG- 7R - gz P
m m 7 m 7 m
2
= 0.001895h° .

~ 2. T 8 64 . 64 . 8Sin(m/2)
°Ne' = Csc' TN a1,z izt 72 } ]

4 4 33
m g m g maq mq

= 0.01855h2.

2, T 64 8 64 16 . .8Sin(mr/2)
Ce~' =cy ' = W[ Q (5 - 5= - ( - ) } ]
EC - SWec m1,3 (& S S e o S LR A

2
= 0.01855h° .

2, = 128 16 128 . .8Sin(mr/2)
'=h[ L {Q (- 55 - ( - )} ]
p RPN i S I LR

= 0.21289h°% .

1

Qm & ——————— and n

Cosh(mm/2)

1]
e




APPENDIX B

COMPLETE FA SOLUTION OF MOMENTUM EQUATION

In section 3.3, the momentum equation was divided into three parts

in order to obtain the analytical solution conveniently. In this Ap-

pendix, the solution to each of these three parts is obtained separately.

The discussion of section 3.3 is briefly reviewed here. The three

problems to be solved are

Problem (1): Homogeneous equation (3.42) with two homogeneous
boundary conditions.

Problem (2): Homogeneous equation (3.43) with other two homogeneous
boundary conditions.

Problem (3): Non-homogeneous equation (3.44) with homogeneous
boundary conditions.

The three solutions obtained from these three problems are then summed

to give the final solution of the momentun equation.

Solution to equation (3.37)

The equation to be solved is

2 02 - - -
(A" + B )uL T Uikt Uiy (3.

i
(2]
~1

along with the boundary conditions

e A A e
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7

- B 2, -(Ah + By)
ul(h’)') = (aE + bEy + CEY )e ’

= ﬁl(-h.y) = (ay + by + cwyz)e(Ah - B,
v, (x,k) =0,

ﬁl(x,-k) =0,

Since the boundary conditions on the northern and southern sides

are homogeneous, the solution can be assumed to be of the form

n
ul(x,y) = nglAn(x) Sin kn(y + k), (B.1)
where
= 7 -
An =5 I 1,2,... ,

and A(x) is a function to be obtained. Equation (B.1l) is now sub-

stituted in equation (3.27) to give

)]

, o 2 .
" -
ni1 An(x)Sln An(y + k) nélxn An(x) Sin xn(y + k)

B2

2 ® . .
- (AT + ) nglAn(x) Sin An(y +k) =0, (B.2)

or
A'(x) - (A2 + B2 + A Z)A (x) =0
n n’n ’
or
A(X) - q A (x) = 0O B.3)
n 9 n ’ (B..
where
1 2-al gl !
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Equation (B.3) is a second order, homogeneous, ordinary differential

equation which has a solution of the form
An(x) = Cn51nh(qnx) + CZnCOSh(qnx)° (B.4)

The constants Cln and C2n are evaluated from the boundary conditions at

x =+ h., At x = h,

- - 2. _-(Ah + By)
up(h,y) = (ag + by + cy)e

= nL) Ay(WISin A_(y + k), (B.S)

Multiplying both sides by Sin Am(y + k) and integrating with respect

to y results in

k
2, -(Ah + By) ..
f (aE + bEy + cEy e Sin Am(y + k)
-k
- k
= ngl An(h) {k31n An(y + k)Sin Am(y + k) dy .

Due to orthogonality of the Sine function, the above equation reduces

to
1K 2. -(Ah + By)
. AL = o {k (ag + by + cpy©)e Sin A (y - k) dy,
: or
= e-AR ) }
An(h) * [aEEl + bEEZ + CEES]' 1B.6)
where

III|iIIIIIIIlIIIIIIIIIIIlIIIIlIIIIIIIIIIIIIIIIIIlIIIIIIIIIIIIIIIIIIlIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIl
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) b, Bk (1 - (-1)"e" 28K
El = f e Y sin (y + k)dy = n > 3 s 1
-h n (B + 2. 9
- h -B
E, = f ye Y Sin A (y + k) dy :
2_ n 1
LBk o naCn"enP 2 oG |
2 2 2 2 p) 2 1'n’s
B™ + ) B + A B™ + A
B n n n
. Moy 3
E3 =] yTe Ysin A (y + k)dy ;
-h n |
3 Bk . nak(-1)"e ?BK  4pny(o1)Mem2BK
| =e (- 8425 Blea?
n n
: n -2Bk  2(38% - x 9
2knw(-1)"e " 'n 4Bk 2
* 2 7 ¢ /= 3" 2 AR
(B + A 9 (% + 29 B+
n_ -2Bk
[1-(-1) e 123
(B2 + A I;V n
n
% Similarly, at x = -h,
AR ) i )
Aq(-h) = 5= (agE ) « BBy + ¢ F ) (8.7)

Returning to equation (B.4}, the constants Cln and C"n are now ecvaluated

% from An(x) at x = + h. So

Ap(h) = Cp Sinh(q h) + C, Cosh(q_h)

An(-h) = _Clnslnh(qnh) + CZnCosh(qnh).

;
.¥
|

|
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From these two equations

) An(h) - An(-h)
In 2Sinh(qnh) g

and
An(h) + An(-h)

2n - 2Sinh(qnh) )

Therefore,
ul(x,y) = ngl{CInSinh(qnh) + C2nCosh(qnh)}Sln xn(y + k),

where Cln and C2n are given by equations (B.8) and (B.9).

Solution to equation (3.38)

The equation to be solved is

and the boundary conditions are
uy(h,y) =0,

62(-h.y) =0,

Z)C-(Ax + BK) ’

K T (Ax - BK)
uy(x,-k) = (a, + bsx + c_x%)e \AX

S

S

112

(B.8)

(B.9)

(B.10)

(3.38)
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The solution to this equatior. is exactly similar to (B.10). So
the solution can be written by simply replacing x, y, h, k, A, B, An and

q, by y, x, k, h, B, A, M and qp- Therefore

U00y) = E{C) Sinh(qy) + ComCosh(an)}Sin 4 (x + h) | (B.11)

where
By(K) - B_(-k)
Cin = 753 X (B.12)
Im 281nh(qu)
B (k) + B _(-k)
= N m
Com = 2Coshia k) - (B.13)

Bm(k) and Bm(-k) in the above equations are given by

-Bk
-e E r T
Bm(k) = —-ﬁ——-(aNFl + bNFZ + CNFS) , (B.14)
eBk ) . )
Bm(-k) = —F—-(aSF1 + bSF2 + CSFS) . (B.15)

Fl’ FZ and F3 in equations (B.14) and (B.1S), are, in turn, given by

i h eAhUm[l - (e AN
Fl = [ e Sin 4 (x + h)dx = 3 5 ,

-h m (A° + 1)
: h -Ax
FZ = {h xe Sin um(x + h)dx

- 8K ml(-1)me‘2Ah]. 2 ) h)[l-(-l)me'ZAh] }
2 l 2 2 2 2 m
(A" + A" + AT s+
m m m
h

-y
']

2 -Ax..
3 {h x“e " Sin um(x + h)dx
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M (o moh(D"e AN gpng ()Mo AR gy g)me-2Ah

i
A +u g ) (A% +u 9
m n m
2 2
2 - -2
. [ (3A H ) ) 4Ah . hz] [1_(_1)me Ah1 . }
A+ u 22 (A% + 1 2 A+ u 2)J L
m m m
qmz I Y
my, -
umiz—h-, m-l,Z,... .

Solution to equation (3.39)

The equation to be solved is

(R S T I ~(Ax + By)

3xx - Re Py €

3yy (3.39)

and the boundary conditions are
GschDY) = 0 ’
63(-h,y) =0 ,
ﬁs(x,k) =0 »
Gs(x,-k) =0

Let g(x,y) = Re Py e-(Ax + By) = 121 CQ(Y) Sin vz(x + h)

Multiplying both sides by Sin vm(x + h) and integrating gives

h
(Re P fh ¢~ (Ax + By) Sin v (x + b) dx = C, (¥) (h)

N C A LA e o
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Re p h
C (y) = -—7;35 e BY f e ™ sin y (x + h)dx
-h
= ke P 1 e
h ’
where
h -Ax
I=f e Sinv,(x + h)dx
-h
Ah -Ah L
Svle -vle (-ll_ .
Z ., 2
A™ + .
Assuming 53 of the form
ug; = o4 fl(y) Sin vl[x +h) ,
g(x,y) and ﬁs are substituted in equation (3.39). This gives
£(A% + BH)Y, (y)Sinv, (x + h) = F (-v2)Y,(y)Sinv (x + h)
2 L =1 P A4 L
+ 251 Yz(y)81n vl(x + h)
- 45 Cusiny (x + b,
From this
Yo(y) - q % (y) = C,(y) (B.16)
L L L [3 ! :
where




CUiniieie s o s 00 o ’:'5
OF POCKR (Uit d
116

Equation (B.16) has a solution of the form *

q,Y e 9,
+

= -By
Yz(y) Csze +C e

4 CSl . (B.17)
The firsttwo terms on the right hand side represent the complementary
solution and the third term is the particular solution. To obtain the

constant C. , the term Csze'By is substituted in equation (B.16). This

gives

c,, - (
L
- )

To evaluate the constants C32 and C42, the two conditions used are

Y£CY) = 0at y =+ k. Thus

Cyp ek o c“e‘qzk + cSle‘Bk =0 (B.18)

and

qk Bk _

-qk
C,.e 2 + C4ze + nge =0 (B.19)

kY

Equations (B.18) and (B.19) are solved for C32 and Cdl‘ Therefore,

Sinh(q, - B)k

30 = Cs¢ 5TrR 29,k :

and
Sinh (q, + B)k
C,, =C, = L
42 52 Sinh 2q£k

Sinh(q, - B)ke%eY + Sinh(q, + B)ke %Y 5B
Sinh 2q,k boo(B.20)

Yo (¥} = G, d
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U3(X»Y) = .5 Y, ) Sinv (x + h). (B.21)

Final Solution
The complete solution to the momentum equatior in an element is

given by

(Ax + By) (B.22)

i ulx,y) = {u;(6y) + uy(x,y) + ugx,y)le
i To evaluate the velocity at the interior node P, x = 0 and y = O are

substituted in the above equation. This gives
. (B.23)

Evaluating equations (B.10), (B.11) and (B.21) at the node P and substi-
tuting in (B.23) gives after some rearrangement

u, = C .U C + C.-U CerU

p = CNeUNE * CecYec * CseVse * UNcUne * BscUsc

* Cawlyw * Cwcle * Cswlsw * Cp(Re Plp (B.24)

C

This is the 9-point FA solution of the Navier-Stokes equation. The

coefficients in equation (B.24) are given oy

® e'Ah E3 e-Bk A E3
Chg = 13, Sl By + ) = S (B + gISinG/2)
2k 2h
® e'Ah E3
CEC : n§1,3., Sm{“r“ (El - —7J}Sln(nn/2)

k
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OKiC
AF PO W :
- o-Ah El Bk Eg
CSE = nz=1,3 Sm {‘Z{"‘ (-EZ + k ) + —2—}?' (Ez + E"‘)} Sin (mv/2)
-Bk E
- e - 3 .
CNC = nEl,S Sm { o (E1 - F)}Sln (nw2)
- Bk _ Es .
CSC = n:.1,3 Sm{ﬁ_—(El - F)}Sm(mv/Z)
AR By oBk Es
Caw = nE1,3 Sal 7 (Bp - )% —7 (B + ) ISin(nn/2)
2k 2h
- AR Es
Cuc 7 nk1,3 Spl— (B - PISin(n7/2)
’ k
- AR B, Bk _ E
= I-—-----— - — — - — 1
CSW n§1,3 Sm 3 ( E2 + k) + — ( I:‘.2 " ) }Sin(nm/2)
2k 2h
) xz(eAh - -1)* ™) Sinh(q,-B)k + Sinh(q,+B)k
C, : L .
= pA
P =1 h(AZ . }\i) Sinh 2q1k
Sin _h
S = m .
™ Cesh q,k

118

-1} Sin(27/2)
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APPENDIX C

SOLUTION OF CONTINUITY EQUATION

In this Appendix, the solution for the continuity equation is ob-
tained. As mentioned in section 3.4, the analytic solution of u(x,y) in
an element is not used to calculate v from the continuity equation. 1In-

stead, u(x,y) is approximated by a polynomial and substituted in the

continuity equation which is then integrated to give the solution for v

for an element. Therefore,

2 2
u(x,y) = a, + alx vayy ¢+ AzXy + a,x" + acy

2.2 2 2
+ 36x y o+ a7xy + a8x Y. (C.1)

The coefficients in the above equation are written in terms of the sur-

rounding nodal values, i.e.,

4]
—

]
rof —
5

~~
=
m
(@]

]
=
n\_/

Y
"

3% 3k (g ~ Yyw - Ygp * Ugy)
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s = 77 (U - 2up+u

)
K SC

o
% = a2 (UNE * Ygp * Unw * Ygw T PUpc T Uy - 2uyc - 2uge + dup)

3y = ~—5 (upp * Ugp - Uyy - Ugy ~2upe + 2uyq)

ag = —5— (uyp * Ugy - e - Ugp - Ugy * 2ugl)

Differentiating equation (C.1) with respect to x gives

B ) 2 2
u T a; +agy+ Zadx + 236xy tagy o+ 2a8xy. (C.3)

The value of ux is now evaluated at each of the nine elements. So

(ux)P = ux(0,0) = a,

(ux)EC = ux(h,O) =a + Za4h

(ux)wc = ux(-h,O) =a - 2a4h

(Udpe = U, (0,K) = a, + agk + ak?

(ux)SC = u (0,-k) = a - agk « a7k2 (C.4)
(udyg = Ug(hok) = a) ¢ azk + 2ah + 2a hk’

+ a7k2 + Zaahk

5
3 (u )Nw ux(-h,k) =a +a k = 2a4h - Zabhk

+ a_k? - 2aghk

7
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2
(ux)SE = ux(h,-k) =a; - azk + 2a,h + 236hk
2
+ a7k - Zaahk
2
(ux)sw = ux(—h,—k) =a - ask -2a4h - Za6hk
2
+ a7k + Zthk .
Substituting equation (C.2) in (C.4) gives
W)y = 3= (U - uy)
x’P = 2n YMECc T Y
(U) e = oo (Bu_. - du_ + u.)
x’EC ° 2 EC P Y
(u)y. = L (-u +4u,. -3 )
x’W¢ T 2 VY P~ “Ywe
(u.) =1—(u - u.)
x“NC 2h NE NW (€.5)
(U)epr = o (uer - ugy)
SC 2h SE Sw
(u)ye = L (3 +u. - 4u,.)
NE - Zh ““UWe T Unw - YN
(U ) = o (-uy = 3u., + 4u.)
Y x’ NW 2h NE NW NC
(u)) =L (Bu. + u_, -du_ )
x’ SE 2h SE SW SC
(u)) =—1—(~u - 3u., + du_)
X" SW 2h SE SW SC

Now, a second degree polynomial is written for the derivative ux, i.e.,

- - . - -2 . 2 . 2 -2
U T agrax s ay agxy + a,;x" + acy’s 2 Xy + ajxy” + a

5
X X7y, (C.0)

8
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The coefficients in equation (C.6) are expressed in terms of the deri-

vatives at the nodes as given by equation (C.5). So

a0 = (ux)P

3, = (). - (u)ye)
1 2h x’ EC x’WC

3, = 37 (G)ye - (g
2 2k x’ NC x’SC

a3 = Z%E (o dng - Wy = (udge + (udgyd

1
a4 = ;;7{(UX)EC - 2u)dp ¢ Uyl

1
B ag = —3 {(ux)NC B Z(UX)P ¥ (ux)SC}

2k
.1
a6 = W {(UX)NE + (UX)SE + (ux)Nw + (ux)sw = Z(UX)EC

. z(ux)WC - Z(UX)NC - Z(UX)SC + 4(UX)P}

= _ 1 -
i, = Z;;f (udye * (W) gp - gy - gy = 2(u ) # 2(u )yt '
.1
iy = ;;5; Tudye * W)y - 2y - (udep = (udge + 2(u)gc) .

Integrating the continuity equation gives

p 0
vi| =- ] ul0,ydy
SC -k

0

,
Yp T Vsc T T {k [3g + agy » agy ldy
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- 8 2 3% 3 0

=- lagy + 5~y *3-)’]_k

= - (udp kv %’k tudye - gt - % k{ludne = 20u)p + (u)gct

k
12 [(ux)NC -'8(ux)P b 5(ux)SC]

4 5
TR e 2w T T VECt T YW - 3 Ugg * 3 Ugyl

If h =k,

1
uEC + 3 uwc.(C.S)

=t
1
W=

Similarly, integrating theccntinuity equation from the node NC to

the node P gives

) Vg = U, = > - §—-u L U, + L U, + l-u . u . C.9)
P™UNC T ZAUNE T Z8 UNw T 28 YSE 27 Yow T T Ype T 3 Yo <GS
Combining equations (C.8) and (C.9) gives
V. = .1_ (v +v_ ) + .1_ (u - u - u +u_ ) (C.10}
p 2 NC SC 8 NE NW SE SW”* L

Equation (C.10) is used for calculating the velocity Vp if the

velocity up has been calculated using x-momentum equation. If, on the

other hand, vP is calculated from the y-momentum equation, u

P[S
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obtained from the continuity equation. The equation used, which is

identical to equation (C.10) is

= 1 1 . -
Y = 70 * Upc) g (g - Ve - Vg Vg .
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APFENDIX D

COMPUTER PROGRAM

Chrrkkhikthtkbrhhbtdthhrhhhkhtthrhhkddhhkhkhhrhhrdhhhkhkhkhrdhksk

THIS PROGRAM SOLVES THE NAVIER-STOKES
EQUATIONS FOR A TWO DIMENSICNAL CAVITY
USING PRIMITIVE VARIASLES(U,V,P). THE
FINITE ANALYTIC METHECD IS USED TO
OBTAIN LINEAR ALGEBRIAC EQUATIONS

FROM THE GOVERNING EZQUATIONS WHICH ARE
THEN SOLVED BY THZ IIMPLICIT AND GAUSS-
SIEDEL NUMEZRICAL METHCDS. THIS PROGRAM
WAS RUN ON PRIME-750 COMPUTER.

tE R R R R R R R R RE SRR R R AR RS RS R R R RES SRR R RRRERRESERERERERRRERR R R R ;

LIST OF VARIABLES USED IN THE PROGRAM %

TP T RPN POTY

sNoNoNe e NoNoNo Ko N e

RE REYNOLDS NO. BASED ON SOME REFERENCE
LENGTH AND VELOCITY SCALE

PRESSO OLD VALUE OF PRESSURE

PRESSN NEW VALUE OF PRESSURE

UOLD OLD VALUE OF U-VELOCITY

UNEW NEW VALUE OF U-VELOCITY

VOLD OLD VALUE CF V-VELCCITY

VNEW NEW VALUE OF V-VELCCITY

1Z2MAX MAX. NO. OF NODES IN X-DIRECTION

IRMAX MAX. NO. OF NCDzZS IN Y-DIRECTION

ITERP MAX. NO. OF ITERATIONS FOR PRESSURE

ITRV MAX. NC. OF ITERATIONS ZCR VELCCITIZS

IEND MAX. NO. OF OVERAL ITERATIONS

UP VELOTITY OF MOVING PLATE

TOLUV CONVERGENCE CRITERION FCOR VILCCITIES
REP RELAXATICHN PARAMZITER FCR PRESSURE
REU RELAXATICON PARAVETER FOR U-VELCCITY
REV RELAXATION PARAMETER FOR V-VELOCITY

o XeXe XeReNeRe e Ne e XeRe Ne Ko Ne NeNe N Ne NeoNe Ne

3 C**t*******************i******************************* ‘
b $ INSERT SYSCCM>ERRD.F
1 $INSERT SYSCOM>KEYS.F
4 $ INSERT SYSCOM>ASKEYS
; IMPLICIT DOUBLE PRECISICN(A-H,0-2)
COMMON/COMA/ PRESSN(61,61),UNEW(61,61),VNEW(61,61),
SFNEW(61,61),BBB(61),AAA(61),CC(61),C(61),D(61),
$T(€1),AA(61)
COMMON/COMB,/ ZETA(61,61),PSIN(61,61),PS(61),
$PRESSO(61,61),U0LD(61,€1),VOLD(561,61)
COMMON/CC:iC/ CP1P1,CP1PO,CP1M1,CM1P1, :
$CM1PO, CM1M1,CPCP1,CPOML
COMMON/COMMD,/DCM1P1(74,74),DCl1P0(74,74),
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$DCM1M1(74,74),DCPOP1(74, 74) ,DCPOM1(74,74),

$DCP1P1(74,74),DCP1PO(74,74),DCP1M1(74, 74)

COMMON,/COME /COEFFP (61, 61)

COMMON/COME /A, B, 122, IRR, AKK, BKK

$, ITER, IZMAX, IRMAX, DX, DY

DATA CNE/0.044685/,CNW/0.044685/,CSE/0.044685/,

$CSW/0.044685/,CEC/0.205315/,CWC/0.205315/,

$CNC/0.205315/,CSC/0.205315/,

$ENE,/0.001895076/, FNW/0.001895076/, FSE/

$0.001895076/, FSW/0.001895076/,FEC/0.01855256/,

$FWC,/0.01855256/, FNC/0.01855256/, FSC/0.01855256/,

$FP/0.2128948/
c+++++++++++++++++++++++++++++++++++++++++++++++++++ F++4+++++
c INPUT STATEMENTS

CALL SRCH$$ (KSREAD, ' INPT',4,7,TYPE, CODE)

CALL SRCH$$ (KS$WRIT,'OTPT',4,2,TYPE, CODE)

READ(11, *) IZMAX, IRMAX, ITERP, IEND, ITRV

READ(11, *)X, Y, UP, RE, TOLUV

DO 100 1Z=1,74

DO 100 IR=1,74

READ(11,500)DCM1P1(1Z,IR),DCM1PO (12, IR),DCMIML (12, IR),

$ DCPOP1 (12, IR),DCPOM1(12Z, IR),

$ DCP1P1(12, IR),DCP1PO(12Z,IR),DCPIM1(IZ, IR)

100 CONTINUE

C+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

WRITE(6,501) IZMAX,IRMAX, ITERP, IEND, ITRV,

$X,Y,UP,RE, TOLUV

(o NoNe!

RFP=1.0

RFU=1.0

REV=1.0

DX=1.0/X

DY=1.0/Y

WRITE(6,502) DX,DY

IZM1=12MAX-1

IRM1=IRMAX-1

IRM2=IRM1-1

12M2=12M1-1

I1ZMM=( IZMAX+1) /2

1ZMM1=12ZMM-1

IZMP1=12MM+1

M=12M1
c+++++++++++++++++++++++++++4~++++++++++++++++++++++++++++++#
c INITIAL GUESS FOR VELOCITY AND PRESSURE
C++++++++#+++++++++++++ ++++++++++++++++++++++++++++##+++++#+

DO 105 IR=2, IRM1

DO 105 I2=2,I1ZM1

UNEW(I2,IR)=0.0

VNEW(IZ,IR)=0.0
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PRESSN(IZ,IR)=0.0
105 CONTINUE
C*+$++++++++++++++++++++++++++++++++4~+++++++++++++++++++++++
c BOUNDARY CONDITIONS FOR U,V FOR CAVITY
C+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
| DO 110 12=1, IZMAX
| UNEW( 12, 1)=UP
VNEW(IZ,1)=0.0
UNEW(1Z, IRMAX)=0.0
VNEW(IZ, IRMAX)=0.0
110 CONTINUE
DO 115 IR=2, IRM1
UNEW(1,IR)=0.0
VNEW(1, IR)=0.0
UNEW( IZMAX, IR)=0.0
VNEW( IZMAX, [R)=0.0
115 CONTINUE

ELEMENTS OF TRIDIAGONAL MATRIX FCR
CALCULATING PRESSURE

QOO0

DO 120 12Z=2,12ZM1
AA(IZ)=-CWC
BBB(I1Z)=1.0

120 CC(IZ2)=-CEC

C
C RETURN POINT FOR OVERALL ITERATION
Cc

ITERA=0
901 ITERA=ITERA+1
IF(ITERA.GT.IEND) GO TO 801
WRITE(6,503) ITERA
c+++++++++++++++4‘+++++++++++++++++4'+++++++++++++++++++++++++
c BOUNDARY CONDITION FOR P FOR A CAVITY
c++++++++++++++#+*++++++++++++++++++++++++++++++++++++++++++
DO 125 I2=2, I2ZM1
PRESSN(IZ,1)=(4.0*PRESSN(IZ,2)-PRESSN(1Z,3))/3.0
$-(8.0*VUNEW(IZ,2)-VNEW(IZ,3))/(3.0*RE*DY)
PRESSN(IZ, IRMAX)=(4.0*PRESSN(IZ, IRM1)-PRESSN(IZ, IRM2))
$/3.0+(8.0*VNEW(IZ,IRM1)-VNEW(IZ, IRM2))/(3.0*RE*DY)
125 CONTINUE
DO 130 IR=2, IRM1
PRESSN(1, IR)=(4.0*PRESSN(2, IR)-PRESSN(3,IR))/3.0
$-(8.0*UNEW(2, IR)-UNEW(3, IR))/(3.0*RE*DX)
PRESSN(IZMAX, IR)=(4.0*PRESSN(I2M1, IR)-PRESSN(12M2, IR))
$/3.0+(8.0*UNEW(I2M1, IR)-UNEW(I2M2, IR))/(3.0*RE*DX)
130 CONTINUE
PRESSN(1,1)=(PRESSN(1,2)+PRESSN(2,1))/2.0
PRESSN(1, IRMAX)=(PRESSN(2, [RMAX)+PRESSN(1, IRM1))/2.0 j
PRESSN( IZMAX, IRMAX)=(PRESSN( IZMAX, IRM1) +PRESSN( IZM1, :
$IRMAX))/2.0

qap oW A

ey




(:it‘:x. P , "3 N
PO ot VY :
OF v 128

PRESSN(IZMAX, 1)=( PRESSN( IZMAX, 2) +*PRESSN(1I2M1,1))/2.0

CALCULATION OF NON-HOMOGENEOUS TERM/Z.O*(UX*VY-VX*UY)/
IN POISSON EQUATION

aQan

DO 135 IR=2, IRM1
DO 135 I12=2,I2M1
UXP=(UNEW(I2+1, IR)~UNEW(12-1, IR))/(2.0*DX)
UYP=(UNEW(1Z, IR+1)~UNEW(IZ,IR-1))/(2.0+DY)
VXP=(VNEW(1Z+1, IR)-UNEW(IZ-1,IR))/(2.0*DX)
VYP=(VNEW(1Z, IR+1)-VNEW(12, IR-1))/(2.0+*DY)
FNEW(12Z, IR)=2.0* (UXP*VYP-UYP*VXP)

135 CONTINUE

Cc
Cc RETURN POINT FOR INTERNAL ITERATION OF PRESSURE
o

ITERB=0
902 ITERB=ITERB+1
IF(ITERB.GT.ITERP) GO TO 802
C+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
c CALCULATION OF PRESSURE FROM POISSON EQUATION
C+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
DO 140 IR=2, IRM1
DO 145 I2=2,M
D(IZ)=CNE*PRESSN(IZ+1,IR+1)+CSE*PRESSN(IZ+1,IR-l)
$+CNW*PRESSN(IZ-1,IR*1)+CSW*PRESSN(IZ-l,IR—l)
$+CNC*PRESSN(IZ,IR+1)+CSC*PRESSN(IZ,IR-l)
P=ENE*ENEW(1Z+1, IR+1)+FEC*FNEW(IZ+1, IR)
$+FWC*FNEW(IZ-1,IR)+FNC*FNEW(IZ,IR+1)+FSC*FNEW(IZ,IR-l)
$+FNW*FNEW(IZ-1,IR+1)+FSE*FNEW(IZ+1,IR-1)+FSW*FNEW(IZ-1,
$IR-1)+FP*FNEW(IZ, IR)
P=P* (DX**2)
D(IZ)=D(IZ)-P
145 CONTINUE
D(2)=D(2)+CWC*PRESSN(1, IR)
D(M)=D(M) +CEC*PRESSN( IZMAX, IR)
CALL TRIDAG(2,M,AA,BBB,CC,D,T)
DO 150 I12=2,I2M1
150 PRESSN(I2Z, IR)=T(IZ)
140 CONTINUE
DINITL=G.0
PDIFF=0.0
DO 155 IR=2, IRM1
DO 155 I12=2,12ZM1
DELP=PRESSN(1Z, IR)-PRESSO(1Z, IR)
DPMAX=DABS (DELP)
IF(DPMAX.GT.DINITL) GO TO 803
GO TO 155
803 IZPMAX=1IZ
IRPMAX=IR
PDIFF=DPMAX
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D INITL=DPMAX

155 CONTINUE
IF(PDIFF.LE.
IF(PDIFF.GT.
IF(PDIFF.GT.

.001) REP=1.5
.001) RFP=1.0
.01) RFP=0.5
IF(PDIFF.GT.0.05) RFP=0.4

IF(PDIFF.GT.0.1) RFP=0.3

DO 160 IR=1, IRMAX

DO 160 I2=1, IZMAX

PRESSN(IZ, IR)=PRESSO(1Z, IR) +RFP*

$(PRESSN( 12, IR)-PRESSO(IZ, IR))
160 CONTINUE

DO 165 IZ=1, IZMAX

DO 165 IR=1, IRMAX

PRESSO(IZ, IR)=PRESSN(IZ, IR)
165 CONTINUE

IF (PDIFF.LE.0.00001)GO TO 802

GO TO 901
802 DO 170 IR=1, IRMAX

DO 170 I2=1,IZMAX
170 PRESSN(IZ, IR)=PRESSN(1Z, IR)-PRESSN(I2MM, IRMAX)

DO 175 I12=1,I2ZMAX

DO 175 IR=1,IRMAX
175 PRESSO(I12, IR)=PRESSN(I1Z, IR)

oNoNoNo o

c
c RETURN POINT FOR INTERNAL ITERATION OF VELOCITY
c

ITERU=0
903 ITERU=ITERU+1
IRMAX1=IRMAX+1
Cret+tt+rttrtt+rtrtrtitttttbrtrtttttrtritttbrtstbtbtbttsbtrbrts

cC CALCULATION OF VELOCITY FROM MOMENTUM EQUATION

, C+++++++++a+++++++++++++++++++++++++++++++++++++++++++++++++
5 DO 180 IR=2,IRM1
' DC 180 12=2,12M1

122=12

IRR=IR

CALCULATION OF AVERAGE VELOCITIES U&V

eNPNe!

UU=(UNEW(IZ+1, IR+1)+4.0*UNEW(IZ+1, IR)+UNEW(IZ+1, IR-1)
§+4. O*UNEW(IZ,IR+1)+16.0*UNEW(IZ, IR)+4.O*UNEW(IZ, IR-1)
§+UNEW(IZ-1, IR+1)+&.0*UNEW(I2-1, IR)+UNEW(IZ-1,IR-1))

5 $/36.0

) IF(UU.GT.1.0)UU=1.0
A=0.S*RE*UU
VV=(VNEW(IZ+1,IR-1)+4.0*UNEW(IZ+1, IR)+VNEW(12+1, IR-1)
$+4.0*VNEW(IZ, IR*1)+16.0*VNEW(IZ, IR)+4.0*VYNEW(IZ, IR-1)
S+UNEW(IZ-1,IRP+1)+4.0*UNEW(IZ2-1, IR)+VNEW(I2-1,IR-1))
$/36.0
IE(VV.GT.1.0)VV=1.C
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CALL HOMOG

CALL NHOMOG

AKK=DABS (A)

BKK=DABS (B)

ASQ=AKK* *2

BSQ=BKK* *2

UHNEW=CP1P1*UNEW(IZ+1, IR+1)+CP1PO*UNEW(
$IZ+1,IR)+CP1M1*UNEW(IZ+1,IR-1)+CPOP1*UNEW(IZ,IR+1)
$+CPOM1*UNEW(IZ,IR~1)+CM1P1*UNEW(IZ-1,IR+1)+CM1PO
$*UNEW(IZ-1,IR)+CMIM1*UNEW(IZ-1, IR-1)

UNH=COEFFP(1Z, IR)*RE*(PRESSN(IZ2+1, IR)-
$PRESSN(I2-1,IR))/(2.0*DX)

UNEW1=UHNEW+UNH

VNEW1=0.5*(VNEW(I2, IR-1)+VUNEW(IZ, IR+1))
$+0.125*(UNEW(IZ+1,IR+1)-UNEW(IZ—1,IR+1)-UNEW(IZ+1,
$IR-1)+UNEW(IZ-1, IR-1))

VHNEW=CP1P1*VNEW(IZ+1, IR+1)+CP1PO*VNEW(
$IZ+1,IR)+CP1M1*VNEW(IZ+1,IR-1)+CPOP1*VNEW(IZ,IR+1)
$+CPOM1*VNEW(IZ,IR-1)+CM1P1*VNEW(IZ-1,IR+1)+CM1PO
$*VNEW(IZ-1,IR)+CM1M1*VNEW(IZ-1,IR-l)

VNH=COEFFP(I1Z, IR)*RE*(PRESSN(IZ, IR+1)~-
$PRESSN(IZ,IR-1))/(2.0+DY)

VNEW2=VHNEW+VNH

UNEW2=0.5* (UNEW(12+1, IR)+UNEW(IZ2-1,IR))
$+0.125*(VNEW(IZ+1,IR+1)-VNEW(IZ+1,IR-l)-VNEW(IZ-l,
$IR+1)+VNEW(IZ-1, IR-1))

UNEW( 12, IR)=(UNEW1*ASQ+BSQ*UNEW2)/(ASQ+BSQ)

VNEW(IZ, IR)=(VNEW1*ASQ+BSQ*VNEW2)/(ASQ+BSQ)

CONTINUE

CHHtttt 4444444 ++ 44+ 444+ ++++ 4ttt bbbttt trtbrtt it ittt rrrttrtst

804

805

806

DUINTL=0.0

DVINTL=0.0

UDIFF=0.0

VDIFF=0.0

DO 185 IR=2, IRM1

DO 185 12=2, I12ZM1
DELU=UNEW(IZ,IR)-UOLD(1Z, IR)
DELV=VNEW(TZ,IR)-VOLD(IZ, IR)
DUMAX=DABS (DELU)

DVMAX=DABS (DELV)
IF(DUMAX.GT.DUINTL) GO TO 804
GO TO 805

IZUMAX=12

IRUMAX=IR

UDIFF=DUMAX

DUINTL=DUMAX
IF(DVMAX.GT.DVINTL) GO TO 806
GO TO 185

I2VMAX=12

IRVMAX=IR
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VDIFE=DVMAX OF P

DVINTL=DVMAX
185 CONTINUE

IF(UDIFF.LE.0.001) RFU=1.0
IF(UDIFF.GT.0.001)RFU=0.6
IF(UDIFF.GT.0.01)RFU=0.4
IF(UDIFF.GT.0.1) RFU=0.3
IF(VDIFF.LE.0.001) RFV=1.0
IF(VDIFF.GT.0.001)RFV=0.6
IF(VDIFF.GT.0.01)REV=0.4
IF(VDIFF.GT.0.1)RFV=0.3

DO 190 IR=2, IRM1
DO 190 I2=2,I2ZM1
UNEW(12Z, IR)=UOLD(IZ, IR)+RFU* (UNEW(IZ, IR)-UOLD(1Z, IR))
VNEW(1Z, IR)=VOLD(IZ, IR)+REV*(VNEW(IZ, IR)-VOLD(1Z, IR))
190 CONTINUE
DO 195 IR=1, IRMAX
DO 195 IZ=1, IZMAX
UOLD(12Z,IR)=UNEW(IZ, IR)
VOLD(12Z,IR)=VNEW(IZ, IR)
195 CONTINUE
IF(ITERU.GT.ITRV) GO TO 807
IF(UDIFF.LE.TOLUV) GO TO 808
GO TO 903
808 IF(VDIFF.LE.TOLUV) GO TO 807
GO TO 903

CALCULATION OF VORTICITY AND STREAM-FUNCTION

QOO

807 DO 200 IR=2,IRM1
DO 200 I2Z=2, IZM1l
ZETA(1Z, IR)=(UNEW(IZ,IR+1)-UNEW(IZ, IR-1))/(2.*DY)
$-(VNEW(IZ+1,IR)-VNEW(IZ-1,IR))/(2.+DX)
200 CONTINUE
DO 205 12=2,I12M1
ZETA(1Z,1)=-2.*(DY-PSIN(IZ,2))/DYY
ZETA(12Z, IRMAX)=2.*PSIN(IZ, IRM1)/DYY
205 CONTINUE
DO 210 IR=2, IRM1
ZETA(1,IR)=2.*PSIN(2, IR)/DXX
ZETA( IZMAX, IR)=2.*PSIN(12M1, IR)/DXX
210 CONTINUE
ZETA(1,1)=-2.0/DX
ZETA(I1ZMAX, 1)=-2.0,/DX
ITERPZ=0
S04 ITERPZ2=ITERPZ+1
DO 215 IR=2, IRM1
DO 220 I12=2,12M1
PS(1Z)=CNE*PSIN(12+1,IR+1)+CSE*PSIN(I12+1, IR-1)
$+CNW*PSIN(1Z-1, IR+1)+CSW*PSIN(IZ2-1, IR-1)
$+CNC*PSIN(IZ, IR+1)+CSC*PSIN(1Z, IR-1)
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$~ (FNE*ZETA(I12+1,IR+1)+FEC*ZETA(12+1, IR)
$+FWC*ZETA(12-1, IR)+ENC*ZETA(IZ, IR+1)+FSC*ZETA
$(12, IR-1)+FNW*ZETA(I2-1, IR+1)+FSE*ZETA(I2+1, IR-1)+
$FSW*ZETA(IZ-1,IR-1)+FP*ZETA(IZ, IR))*DXX

CONT INUE

PS(2)=PS(2)+CWC*PSIN(1, IR)
PS(M)=PS(M)+CEC*PSIN(I2MAX, IR)

CALL TRIDAG(2,M,AA,BBB,CC,PS,T)

DO 225 IZ=2,IzM1

PSIN(IZ, IR)=T(12)

CONTINUE

IF(ITERPZ.GT.30)GO TO 901

GO TO 904

FORCE BALANCE CHECK ON CAVITY

SUMP1=0.

SUMP2=0.

DO 230 12=1, IZMAX
SUMP1=SUMP1+PRESSN(1Z,1)
SUMP2=SUMP2+PRESSN (12, IRMAX)
CONTINUE

SUMP1=SUMP1 *DX
SUMP2=SUMP2 *DX
DIFFP=SUMP1-SUMP2

SUMU1=0.

SUMU2=0.

DO 235 IR=1, IRMAX
SUMU1=SUMU1--VNEW( IZM1, IR)
SUMU2=SUMUZ2+VNEW(2, IR)
CONTINUE
SUMU1=SUMU1*DY/(DX*RE)
SUMU2=SUMU2 *DY/ (DX*RE)
DIFFU=SUMUl-SUMU2
CHECKY=DABS (DIFFP)+DABS(DIFFU)
SUMP3=0.0

SUMP4=0.0

DO 240 IR=1, IRMAX
SUMP3=SUMP3+PRESSN(1, IR)
SUMP4=SUMP4+PRESSN( IZMAX, IR)
CONTINUE

SUMP3=SUMP3*DY
SUMP4=SUMP4*DY

SUMV3=0.0

SUMV4=0.0

DO 245 12=1, I1ZMAX
SUMV3=SUMV3-UNEW( 12, IRM1)
SUMV4=SUMV4*UNEW(IZ,Z)-UNEW(IZ,I)
CONTINUE
SUMV3=SUMV3+*DX/(DY*RE)
SUMV4=SUMV4*DX /(DY *RE)
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CHECKX=DABS(SUMP3)-DABS(SUMP4)~DABS(SUMV3)+DABS(SUMV4)

WRITE(6,504)
DO 250 1Z=1,IZMAX

250 WRITE(6,505) (PRESSN(IZ,!R),IR=1, IRMAX)
WRITE(6,506)
DO 255 12Z=1,I2ZMAX

255 WRITE(6,505) (UNEW(IZ,IR),IR=1, IRMAX)
WRITE(6,507)
DO 260 12=1,IZMAX

260 WRITE(6,505) (VNEW(IZ,IR),IR=1, IRMAX)
WRITE(6,508)
DO 265 IZ=1, [ZMAX

265 WRITE(6,505)(PSIN(IZ,IR),IR=1,IRMAX)
WRITE(6,509)
DO 270 12=1, IZMAX

270 WRITE(6,505)(ZETA(IZ,IR),IR=1, IRMAX)
WRITE(6,510) CHECKX
WRITE(6,511) CHECKY

C
C FORMATS
c

500 FORMAT(1X,8F9.6)

501 FORMAT('IZMAX=',I3,/'IRMAX=',I3/'ITERP=',I3/
$'IEND =',I3/'ITRV =',13/'X =',F9.6/'Y =',F9.6/
$'UP=',F9.4/'RE=',F9.4/'TOLUV=',F6.4/)

502 FORMAT('DX=',F6.4/'DY="',F6.4/)

503 FORMAT(//'ITERA=',1I3)

504 FORMAT(/'PRESSURE IS')

505 FORMAT(/'IZ=',I3,3X,11F9.S,9(/9X,10F9.5,))

506 FORMAT(/'VELOCITY U IS')

507 FORMAT(/'VELOCITY V IS')

508 FORMAT(/'STREAM-FUNCTION Is')

509 FORMAT(/'VORTICITY IS')

310 FORMAT('NET FORCE IN X-DIRECTION IS',E14.7)

511 FORMAT('NET FORCE IN Y-DIRECTION Is',E14.7)
CALL EXIT
END

C+++++++++++++++++++++++++++++++++++++++++++++++++++++++++

C++++++4++++++++++++++++++++++++++++++++++++++++++++++++++

C

c SUBROUTINE TO CALCULATE PRESSURE USING IMPLICIT
C METHOD.

Cc

C+++++++++++++++++++++++++++++++++++++++++++++++++++++++++
C++++++++++++++++++*++++++++++++++++++++++++++++++++++++++
SUBROUTINE TRIDAG(IF,L,AAA,BBB,C,D,V)
IMPLICIT DOUBLE PRECISION(A—H,O-Z)

DIMENSION AAA(Bl),BBB(él),C(Gl),D(61),V(61),8ETA(61),
$GAMMA(61)

BETA(IF)=BBB(IF)
GAMMA(IF)=D(IF)/BETA(IF)
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IFP1=IF+1
DO 1 I=IFP1,L
BETA(I)=BBB(I)-AAA(I)*C(I-1)/BETA(I-1)
1 GAMMA({I)=(D(I)-AAA(I)*GAMMA(I-1))/BETA(I)
V(L)=GAMMA(L)
LAST=L-IF
DO 2 K=1,LAST
I=L-K
2 V(I1)=GAMMA(1)-C(I)*V(I+1)/BETA(I)
RETURN
END
C++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
C++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

SUBROUTINE TO CALCULATE THE COEFFICIENTS FOR

THE MOMENTUM EQUATION.

THE COEFFICIENTS ARE STORED IN A DATA-BANK FOR
VARIOUS VALUES OF A AND B. DEPENDING ON THE

VALUE OF A AND B IN EACH ELEMENT THE COEFFICIENTS
ARE INTERPOLATED FROM THE DATA-BANK.

oNoNoNONONO N NS

CHtttttttttttttrtttttttrrtttttbrtttttttttrrttbttttttttttttstess
CH++++++++4+4++++++ttttttttrttbrtrrrrrttrtrrttrttttrtrtttttttttdts
SUBROUTINE HOMOG
IMPLICIT DOUBLE PRECISION(A-H,0-2)
COMMON/COMD/DCM1P1(74,74),DCM1P0(74,74),DCM1M1(74,74),

$DCPOP1(74,74),DCPOM1(74,74),DCP1P1(74,74),DCP1P0O(74,74),

$DCP1M1 (74, 74)

COMMON/COMF/A, B, 122, IRR, AKK, BKK

$,ITER, I2ZMAX, IRMAX, DX, DY

COMMON,/COMC/ CP1P1,CP1PO,CP1M1,CM1P1

$,CM1PO,CM1M1, CPOP1, CPOM1
CSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS

C FIND THE LOCATION OF
Cc CORRESPONDANCE POINT IN DATA BANK
CS5555SS555555S55555SSS555SSS5555535555SSSSSSSSSS5SSSSSSSSS
AH=A*DX
BK=B*DY
AAH=DABS (AH)

BBK=DABS(BK)

16 AAC=AAH/0.01
IF(AAH.LT.0.01)GO TO 10
IF(AAH.LE.O0.1.AND.AAH.GE.0.01)GO TO 11
IF(AAH.LE.1.0.AND.AAH.GT.0.1)GO TO 12
IF(AAH.LE.10.0.AND.AAH.GT.1.0)GO TO 13
IF(AAH.LT.100.0.AND.AAH.GT.10.0)GO TO 14
IF(AAH.GE. 100.0)AAH=99.9999
GO TO 16

10 APX=1.0
NOA=1

AAX=AAC
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GO TO 15

ADX=0.5

PP=(AAC-1.0)/0.5

NP=PP

AAX=(PP-NP)*0.5

NOA=NP+2

GO TO 15

ADX=5.0
PP=(AAC-10.0)/5.0

NP=PP

AAX=(PP-NP)*5.0
NOA=NP+20

GO TO 15

ADX=50.0
PP=(AAC-100.0)/50.0
NP=PP

AAX=(PP-NP)*50.0
NOA=NP+38

GO TO 15

ADX=500.0
PP=(AAC-1000.0)/500.0
NP=PP

AAX=(PP-NP)*500.0
NOA=NP+56

CONTINUE

BBC=BBK/0.01
IF(BBK.LT.0.01) GO TO 20
IF(BBK.LE.O.1.AND.BBK.GE.0.01)GO TO 21
IF(BBK.LE.1.0.AND.BBK.GT.0.1)GO TO 22
IF(BBK.LE.10.0.AND.BBK.GT.1.0)GO TO 23
IF(BBK.LT.100.0.AND.BBK.GT.10.0)GO TO 24
IF(BBK.GE. 100.0)BBK=99.9999
GO TO 26

BDY=1.0

NOB=1

BBY=BBC

GO TO 25

BDY=0.5

PP=(BBC-1.0)/0.5

NP=PP

BBY=(PP-NP)*0.5

NOB=NP +2

GO TO 25

BDY=5.0
PP=(BBC-10.0)/5.0

NP=PP

BBY=(PP-NP)*5.0

NOB=NP +20

GO TO 25

BDY=50.0
PP=(BBC-100.0)/50.0
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NP=PP
BBY=(PP-NP)*50.0
NOB=NP+38
GO TO 25
24 BDY=500.0
PP=(BBC-1000.0)/500.0
NP=PP
BBY=(PP-NP)*500.0
NOB=NP+56
25 CONTINUE
CSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS

Cc INTERPOLATION OF THE LOCATED POINT
Cc IN DATA BANK
CS5S55SSS555S5555SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS
NOA1=NOA+1
NOB1=NOB+1

XODX=AAX/ADX
YODY=BBY/BDY
C00=1-XODX-YODY+ (XODX*YODY)
C10=XODX- ( XODX*YODY)
C11=XODX*YODY
CO1=YODY- ( XODX*YODY)
CM1P1=DCM1P1(NOA, NOB) *COO+DCM1P1(NOA1, NOB)*C10+
1 DCM1P1(NOA1,NOB1)*C11+DCM1P1(NOA,NOB1)+*CO01
CM1PO=DCM1PO (NOA, NOB) *COO+DCM1PO (NOA1,NOB)*C10+
DCM1PO(NOAL, NOB1)*C11+DCM1PO(NOA, NOB1)*CO1
CM1M1=DCM1M1(NOA.NOB) *COO+DCM1M1 (NOA1,NOB)*C10+
DCM1M1(NOA1,NOB1)*C11+DCMIMI1 (NOA, NOB1)*CO1
CPOP1=DCPOP1(NOA, NOB) *COO+DCPOP1 (NOA1, NOB)*C10+
DCPOP1(NOA1,NOB1)*C11+DCPOP1 (NOA, NOB1)*CO01
CPOM1=DCPOM1 (NOA, NOB) *COO+DCPOM1 (NOA1, NOB)*C10+
DCPOM1 (NOA1,NOB1)*C11+DCPOM1 (NOA, NOB1 ) *CO1
CP1P1=DCP1P1(NOA, NOB) *COO+DCP1P1 (NOAl,NOB)*C10+
DCP1P1(NOAl,NOB1)*C11+DCP1P1(NOA,NOB1)*C01
CP1PO=DCP1PO(NOA, NOB) *COO+DCP1PO (NOA1,NOB)*C10+
DCP1PO(NOA1,NOB1)*C11+DCP1PO(NOA, NOB1)*CO1
CP1M1=DCP1M1(NOA, NOB) *COO+DCP 1M1 (NOA1, NOB)*C10+
8 DCP1M1(NOA1,NOB1)*C11+DCP1M1(NOA, NOB1)*CO1
CSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS
c TURN TO THE EXACT DIRECTION OF
c COEFFICIENTS----A AND B
CSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS
IF(A.GE.0.0)GO TO 33
CNE=CP1P1
CP1P1=CM1P1
CM1P1=CNE
CEC=CP1PO
CP1PO=CM1PO
CM1PO=CEC
CSE=CP 1M1
CP1M1=CM1M1

b I A I ¥ L B - R 7 I V]




inen

33

34

ORIGH s = - 137

» vl “tva‘»». ) N
OF POGR Quiariry
CM1M1=CSE

CONT INUE

IF(B.GE.0.0)GO TO 34

CNW=CM1P1

CM1P1=CM1M1

CM1M1=CNW

CNC=CPOP1

CPOP1=CPOM1

CPOM1=CNC

CNE=CP1P1

CP1P1=CP1M1

CP1M1=CNE

CONTINUE

RETURN

END

CHett+++++44t++tttt+++4++ttttttttrtttbrtttrtrttttttrtttttsss
CHr44++++++++++++ 444+ +++++++++++ttrtt+dtttrrtttttittt+e++++4

c
Cc
C
C
c

SUBROUTINE 10 CALCULATE THE COEFFICIENT OF
THE INHOMOGENEOUS TERM IN THE MOMENTUM
EQUATION

CHetttttttttttttttttt+ttttttttrttrtrtttrttrrrttttrtttstdesss
CHett++ttttttttttttt+4+t++t+t+ttttrrrtrttrrtttrtttttte+++44

10

SUBROUTINE NHOMOG

IMPLICIT DOUBLE PRECISION (A - H, O - 2)
COMMON/COME/A, B, 122, IRR, AKK, BKK
$, ITER, IZMAX, IRMAX, DX, DY
COMMON/COME /COEFEP (61, 61)

SUM=0,

DO 10 L=1,35,2

AL=FLOAT (L)

H=AL*1.5707963 /DX
QLS=(A**2)+(B**2)+ (H*+2)

QL=DSQRT (QLS)

X1=DEXP ( (QL-B) *DY) -DEXP ( - (QL-B) *DY}
X2=DEXP ( (QL+B) *DY) -DEXP (- (QL+B) *DY)
X3=DEXP (2.0*QL*DY)-DEXP (-2 .0*QL*DY)
X4=(X1+X2)/X3

X5=X4-1.0

X6=DEXP (A*DX) +DEXP (-A*DX)
X7=H*X6,/DX

X8=(QLS-B**2)

XXB=H**2+A**2

X9=X7*X5/(X8*XX8)
X0=X9*DSIN(AL*1.5707963)

SUM=SUM+X0

CONTINUE

COEFFP (122, IRR)=SUM

RETURN

END
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